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Raman spectra from glass fibers subjected to high tensile stresses (up to 4 GPa) were decomposed into their Gaussian
components, which were then assigned to normal vibrational modes of either SiO, or Si,O molecules using an “‘isolated
molecule’” model. Such molecule-related parameters as force constants, Raman coupling constants and the dispersion of
the intertetrahedral bond angle were estimated from the frequencies, heights and widths of the components. It is conclud-
ed from the analysis that the Raman spectrum change associated with the application of tensile stress arises principally,
not from a Si-O bond stretching or Si-O-Si bond angle broadening, but from a change in the tetrahedral angles of the

SiO4 molecules constituting silica glass networks.

Introduction

§1.

Pure silica glass exhibits six peaks in its first-order
Raman spectra: a dominant peak at 440 cm™' (usually
assigned to bond-bending vibrations), there small peaks
at 800, 1065 and 1200 cm ™' (usually assigned to bond-
stretching vibrations), and two sharp peaks at 495 and
604 cm™! (assigned to ‘‘planar rings’’ by Galeener et
al."?). These peak assignements to vibrational modes,
however, are not so convincing in the case of silica glass
as in that of crystalline silica, since in the former case the
peaks are inevitably blunted from the lack of long-range
lattice periodicity.

To interpret the Raman spectra of silica glass, Sen et
al.> proposed an ““NN-CF-ICRN’’ model (wherein are
taken into consideration only nearest-neighbor central-
force interactions among the tetrahedrons forming
continuous random networks). Using this model they
expressed Raman peak frequencies as functions of in-
tertetrahedral angles, atomic masses and central forces.
With regard to the Raman peak shifts caused by the
isotope substitution of glass constituents and to an associ-
ated change in the fictive temperature of glasses, a good
agreement was reported between their calculation and ex-
periments.>”

Walrafen et al.¥ and Hibino et al.” observed that the
shape of the 440 cm™' peak was susceptible to tensile
stresses applied to silica glass fibers. Since the NN-CF-
ICRN model provides no information about changes in
the Raman intensity, they decomposed the observed
Raman spectra into Gaussian components in order to in-
terpret the stress effect more or less quantitatively.>!®
However, they failed to assign the Gaussian components
to the vibrational modes of SiO, networks. The purpose
of this communication is to achieve those component
assignments, and to show that the stress effect can suc-
cessfully be interpreted if the reduced Raman spectra are
decomposed into seven main Gaussian components
representing the normal vibrational modes of either SiO,
tetrahedral or Si,O triangular molecules.
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Spectrum Decomposition into Normal Modes

§2.

According to Shuker and Gamon,'” the Raman scatter-
ing intensity (Stokes shift at a frequency w) for amor-
phous solids is given by

I(w)=§] Cy- [1+n(w)] gs(w)/ w, (1)
where b denotes a vibration mode and n(w) a Bose func-
tion, while g,(w) and Cj, represent the density of states
and the Raman coupling constant corresponding to the
mode b, respectively. (In deriving eq. (1), C, is assumed
to be independent of w.) From eq. (1) one can readily
write the reduced Raman intensity 7%(w) as

I(w)=IHw) w/[1+n(w)]= ; Co- 9p(w), 2
i.e. I”(w) becomes a linear function of the density of
states.

In deriving eq. (1) Shuker and Gamon replaced a ¢
function (that was employed in the case of crystalline
silica) with g,(w), assuming that a breakdown of momen-
tum selection rule (i.e. dispersion in Raman frequencies)
should result from such a mechanical disorder as that ex-
emplified by a variation in bond length or bond angle. In
the present treatment we further assume that this
disorder can be expressed in terms of a Gaussian distribu-
tion function if it distributes uniformly in a silica glass
structure, i.e., if there are no structural polarization or
orientation effects. Using this assumption we decompos-
ed the observed /"(w) into the Gaussian components so
that they might represent the density of each state.
Typical results are summarized in Fig. 1, where the solid
line indicates the reduced intensity observed for a silica
glass fiber and the dashed lines indicate the results of a
decomposition, which was carried out as follows.

First, attention was focussed on the normal vibration
modes of a tetrahedral (AX, type) and a triangular (A, X
type) molecule. As is schematically illustrated in Fig. 2,
the AX, type has four normal modes, i.e., a non-
degenerate scalar A, (V1), a doubly degenerate tensor E
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Fig. 1.

Gaussian components of a reduced Raman spectrum observed for a silica glass fiber. The dashed lines indicate the com-

ponents estimated while the solid line indicates the observed reduced spectrum.
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Fig. 2. Normal vibration modes of a tetrahedral molecule (a) and a
triangular molecule (b).

(V2) and two triply degernerate vector F, (V3, V4)
modes. On the other hand, the A,X type has three, i.e.,
two non-degenerate scalar A, (V'1l, V'2), and a non-
degenerate antisymmetric B (V'3) mode. Bearing these
vibration modes in mind and assuming® that there are no
interactions between the triangular and tetrahedral
modes of vibration, we determined their frequencies re-
garding the SiO, and Si,O molecules using the several
data known for molecules with a similar structure (SiF,,
Si02, on, CtC.).

The next step was to determine a set of seven Gaussian
components which have center frequencies approximate-
ly equal to one of the above-stated vibration frequencies.
With the aid of a personal computer the height and width
of each component were varied in a successive manner so
that the superposition of all the components might agree
with the observed reduced intensity I(w). However, a
satisfying conformation, say with an error below 1%,
could not be achieved without introducing six subsidiary
components. Their assignments are listed in Table I,
where the two components at 495 and 604 cm™! are re-

*This does not rigorously hold for an actual glass network.

Table I. Parameters determined by decomposing the Raman spec-
trum obtained from silica glass fibers.

Assignment Center Width Height  Area(%) C,
100 40 50 2.6 /
250 50 120 7.8 0.35
330 40 130 6.8 0.53
/ 360 40 30 1.6 /
V4 455 55 550 39.6 2.63
planar-ring 495 9 150 1.7 16.5
planar-ring 608 20 180 4.7 2.82
/ 670 15 35 0.7 /
/ 710 15 25 0.5 /
A%8 1 770 130 120 20.4 2.20
V1 808 30 155 6.1 1.00
V3 1065 40 75 3.9 0.47
V'3 1195 45 60 3.5 0.33

C,: Raman coupling constant

garded as planar-ring-related peaks while the other four
are considered to be components merely for a compensa-
tion of the seven normal modes.

The Gaussian components thus determined appear to
represent very well the normal vibration modes (shown in
Fig. 1) for silica glass. Hence, in the succeeding step we
tried to express their frequencies in terms of molecule-
related parameters, such as the interatomic force con-
stants, atomic masses and bond angles. For this purpose
the GF matrix method was used.'"'® As is illustrated in
Fig. 3, the F matrix used had diagonal and non-diagonal
components corresponding to the force and interaction
constants, respectively. For the sake of simple calcula-
tions we neglected interactions between the bond-
stretching and bond-bending vibrations. We also assum-
ed that all of the Si-O bond length (7o), the O-Si-O bond
angle (¢o) and the Si-O-Si bond angle (6,) were con-
stants. To determine the eigenvalues of the GF matrix,
we successively repeated a unitary conversion. As a
result, the frequencies of the seven Gaussian components
could be written as follows:

@1 (808 cm )= ( fi+3 £5)(1/mo+[1+3 cos ¢ol/my), (3)
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'/L ‘/1\‘ diagonal elements
//Q\ (/& nondiagonal elements

/\ A diagonal elements
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Fig. 3. F matrix elements of tetrahedral and triangular molecules; the
elements have both diagonal and non-diagonal components corre-
sponding to force and interaction constants, respectively.

w3250 cm™Y)=2(fo+fs—2 f)(1 +cos o)~ /mo,  (4)
@3(1065 cm™)=(fi —fi)(1/mo+[1—cos ¢ol/ms), (5)
w3455 cm™)=2( fr—f5)(1/ mo+[1—cos ¢l

x tan? (¢o/2)/ my), 6)
(770 cm™ )= (f1+f3)([1 +cos O]/ mo+1/mg),  (7)
w2330 cm ™) =213([1 —cos 6o]/mo+ 1/ my), ®)

and
w3} (1195 cm ™ Y= (f1—f3)([1 —cos O]/ mo+1/mg). (9)

In the above m, and m, denote the mass of an oxygen
and that of a slicon atom, respectively. The central fre-
quency of each component is indicated as a wavenumber
in its respective parentheses.

Among published X-ray diffraction data we chose
1.61 A and 144° as the average value of r, and of 6, re-
spectively. On the other hand, ¢, was estimated to be
109.5° (i.e., cos ¢o=—1/3) from a geometrical require-
ment for a tetrahedron. A comparison of both sides of
egs. (3) to (9) (into the right-hand side of which the above
values were substituted) yielded the following F matrix
elements:*

fi=6.1, £=0.29, f,=0.02, fi;=-—0.03,
fs=—0.16, f1=6.5, f3=0.22, f3=0.81
[mdyn/A]. (10)

One should note in eq. (10) that the value of f; is very
close to that of f1. This suggests the validity of the pre-
sent analysis; since both of them represent the stretching
force constant for a Si-O bond, there is no reason why
they should differ so much, though f; is concerned with
the bonds constituting a tetrahedron while f; with those
constituting a triangle. That f; and f; are nearly equal is
also noteworthy, since this indicates that the (bond-
bending) force constant for the angle O-Si-O is nearly
equal to that for Si-O-Si.

In evaluating the F matrix elements we assumed that
all or ro, ¢o and 6, were always constant throughout a
glass network. Actually, however, these values must
more or less scatter. This is considered to be the cause of
the frequency widths of the observed Gaussian com-
ponents.

The fluctuation range of 6, could be estimated from
the width of the V'1, V'2 and V'3 components using eqs.
(7) to (9). The solid lines in Fig. 4 indicate the
dependence of the Si-O-Si bond angle (6,) on the wave
number; to obtain this relation, we assumed that the
vibrations were harmonic and that none of f7, f> and f3
were affected by a small change in 6,. The horizontal
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Fig. 4. The Si-O-Si bond angle as a function of the vibration wavenumber. The abscisae of the intersections between the
horizontal dashed line and the solid lines indicate the center-of-component frequencies. The width between the intersec-
tions and the vertical solid lines, such as Aw shown, represent the extent of frequency fluctuation (the values of Aw, the
width of Gaussian components, are summarized in Table I).

*To determine the values of f; and f; in eq. (10) we used f,+ f; +4f,=0, a relation resulting from a unitary conversion.



652 Kazuhiro EMA, Yoshinori HiBiNo, Hidemi SHIGEKAWA and Shin-ichi Hyopo

1.0

Reduced Intensity (a.u.)

800

Wavenumber (cm~1)

Fig. 5.

Gaussian components (the dashed lines) adjusted to conform with the neutron diffraction spectrum (the solid line) ob-

served by Leadbetter and Stringfellow. The dotted line indicates the spectrum synthesized from all the components.

dashed line in Fig. 4 shows the average of 6, (144°),
whereas the abscissae of the intersections between the
dashed and the solid lines correspond to the center-of-
component frequencies. The vertical dashed lines repre-
sent the extent of frequency fluctuations (4dw) by their
deviation in abscissae from their respective center-of-
component frequencies. Using this relation and the data
on Aw (summarized in Table I), we can conclude that the
Si-O-Si bond angle in silica glass fibers lies in a range
120° <6,<180°, in good agreement with the results
from X-ray diffraction studies.

As can be seem in eq. (2), the reduced Raman spectra
are a linear function of the density of state g,(w).
However, the spectra do not represent the summation of
all g,(w)’s, since the Raman coupling constant C, may
differ from mode to mode. In order to estimate C, for
different normal modes of vibration, we employed
neutron diffraction data provided by Leadbetter and Str-
ingfellow:' We adjusted the heights of our previously
decomposed spectra (without changing their center fre-
quencies and frequency widths) so that the spectrum syn-
thesized from the decomposed spectra (the dotted line in
Fig. 5) might conform to that of neutron diffraction (the
solid line). The last column of Table 1 shows the relative
magnitudes of Cj, thus determined. These results seem to
suggest that, aside from some of the planar-ring-related
modes, either the tetrahedral V4 or the triangle V'1 mode
is most likely to undergo Raman coupling.

§3. Tensile stress effects on Raman Spectra

Figure 6(a) shows the reduced intensity spectra ob-
tained from the silica glass fibers which were either
unstrained or strained. It can be seen that under a stress
of 4 GPa the dominant peak at 440 cm ™' was decreased
in height by 18% and was slightly broadened from that
observed for a stress-free fiber. By means of a deconvolu-
tion of these spectra into Gaussian components (similar
to the present study) it was shown that, as is illustrated in
Fig. 6(b), the tensile stress affects no other components
than that corresponding to the tetrahedral V4 mode. This
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Fig. 6. (a) Reduced intensity spectra for a silica glass fiber which was
either free of stress or under 4 GPa tensile stress. (b) The change of a
Gaussian component corresponding to the tetrahedral V4 mode
under 4 GPa tensile stress, which is consistent with the change shown
in (a).

change in the V4 mode spectrum is now discussed in con-
nection with the glass network structure.

We can naturally presume that a tensile stress causes
an elongation in the Si-O bonds, an increase in the Si-O-
Si bond angles and a distortion of SiO, tetrahedrons. The
effect of Si-O bond elongation on the Raman spectrum is
hardly possible to estimate from egs. (3) to (9), since they
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do not include ro. However, the stress-induced change in
ro must be negligible in comparison with that in bond
angles, since the bond-stretching force constants ( f; and
f11in eq. (10)) are much greater than the bond-bending
ones (f; and f3). Hence, in view of eq. (6)—the expres-
sion for the V4 mode frequency—that depends solely on
¢, it is apparent that a stress-induced change in ¢, i.c.,
the distortion of a SiO, tetrahedron, must play a signifi-
cant role in the spectrum behavior of the V4 mode.

at no stress

at stress
@f&
a
ﬁ '
9o = 109.5° A
a>p,>f uniaxial
stress

Fig. 7. Schematic illustration for the distortion of a tetrahedral
molecule under uniaxial stress.

If the O-Si-O bond angles « and 3, are defined in the
manner shown in Fig. 7, they must have the relation

3 cos?a+4cos f+1=0, an
where
(> ¢9=109.5° and B<¢o=109.5").

Using this relation, we calculated the dependence of each
normal mode frequency of a SiO, tetrahedron on «. The
results are shown in Fig. 8, where the dashed line in-
dicates ¢o(=109.5"), the bond angle of undistorted
tetrahedrons. One can see in Fig. 8 that two triply
degenerate F, modes (V3 and V4) become clearly decoupl-
ed into a non-degenerate (A;) and a doubly degenerate
(E) mode with an increase in the deviation of o from ¢,.
Hence, it seems very plausible that, as illustrated in Fig.
9, the tensile stress will cause a shift in the frequencues of
the E and A, modes and, thus, to change the superposi-
tion of these two modes, i.e., the V4 mode. Figure 9
seems to also explain the reason for the stress-induced
lowering and blunting of the V4 mode component.

The V4 mode component was also found to decrease in
area as a result of the tensile stress. This can be ascribed
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Fig. 8. Wavenumber of normal mode vibrations for a SiO, tetrahedron as a function of a.
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Fig. 9. Reduced intensity change associated with the stress-caused decoupling of the V4 vibration (triply degenerate F, mode)
into a non-degenerate A, and a doubly degenerate E mode.
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to a decrease in the Raman coupling constant C,:
Though it is largest for the V4 mode among the normal
vibration modes (Table I), it should be lessened with the
growth of asymmetry of SiO, tetrahrdrons. Since the Si-
0O-Si bond angle « is estimated to vary from ¢, (=109.5°
at zero stress) to 115° (at 4 GPa), the tetrahedron can be
elongated by 6.7% along the tensile axis—close to 6.5%,
the measured strain of sample fibers.

In our previous study, no tensile-stress effects were ob-
served regarding the Gaussian components assigned to
Si-O-Si triangle modes. However, Fig. 4 indicates that
the frequency of the V'1 and the V'2 mode will be raised,
while that of the V'3 mode will be lowered, with increas-
ing 6 (=144"). This indicates that the average of 6 is
scarcely affected by tensile stresses, through 6 for each
triangle in a glass nework may increase or decrease de-
pending on the direction of the Si-Si bond of the triangle
concerned, e.g., on whether the direction is parallel or or-
thogonal to stress axis. If this actually occurs, an exten-
tion of the fluctuation range of € must result in the
broadening of the spectra concerned, which seem,
however, to have been too small for us to detect the
effects.

Stress effects were also not observed for the 495 and
604 cm™! peaks, which are usually ascribed to the
presence of ‘‘planar rings’’, i.e., the defects with a
regular ring-like form. This suggests that planar rings are
less susceptible to external strain than their surrounding
amorphous network.

§4. Discussion

To realize the advantage of the isolated molecule
model adopted in the present study over the NN-CF-
ICRN model stated in §1, one should compare eqgs. (3) to
(9) with the corresponding expressions based on the NN-
CF-ICRN model. According to Sen ef al., they are writ-
ten as

@i =(¢/ mo)(1+cos 6), (12)

w30 =(¢/ mo)(1—cos 6), (13)

3, = ({/ mo)(1+cos 6)+(4¢/3m), (14)
and

win=({/mo)(1—cos O)+(4L/3my). (15)

In the above m, and my denote the mass of an oxygen
and that of a silicon atom, respectively, while { is the cen-
tral force due to the Born potential and # the Si-O-Si
bond angle. It should be noted that, although egs. (12) to
(15) represent the vibrations of a SiO, tetrahedron for
both V1 and V3 mode, (bond-stretching) they do not in-
clude V2 and V4 modes since no forces other than central
forces are considered in the NN-CF-ICRN model.

On the basis of these equations Sen ef al. assigned four
dominant Raman peaks of silica glass at 440, 800, 1065
and 1200 cm ™" t0 w1, W3n, w4, (TO), and w4, (LO), respec-
tively. According to Galeener et al,>® a Raman frequency
shift caused by the Si®*—Si** and O'*—0'" isotope
substitution in silica glass agreed with their prediction
based on the NN-CF-ICRN model. However, they were
unable to explain in terms of the NN-CF-ICRN model
their observation on a slight shift in the dominant peak at

440 cm™!, which also resulted from the Si?®*— Si* substitu-
tion. This is no wonder, since according to eq. (12) w,
has no connection with the atomic mass of Si. On the
other hand, any of their results are easy to interpret from
egs. (3) to (9), i.e., in terms of our isolated molecule
model.

Among the Raman spectrum components shown in
Table I some, such as at 100, 360, 710 and 770 cm ™!,
have been left unassigned. This is simply because the ten-
sile stress effects on some of them were very slight, even
under very high stresses. To make a complete assign-
ment, an experimental study employing a much higher
stress is necessary; such a study does not appear impossi-
ble because 4 GPa is still much lower than the theoretical
strength of silica glass. It should be noted here than an
effect similar to that of tensile stress on Raman spectra,
i.e. the lowering and broadening of the dominant peak at
440 cm™!, has been observed for silica glass fibers drawn
at a very high speed® and also for glasses stabilized at
1000 and 1300°C."™

§5. Conclusion

Reduced Raman spectra from pure silica glass fibers
were decomposed into Gaussian components, which
were then assigned to the normal vibrational modes of a
SiO, tetrahedron and of a Si,O triangle on the basis of
the isolated molecule model. This enabled us to make a
plausible interpretation about the effect of tensile stress
on the spectra and to conclude that the distortion of SiO4
tetrahedrons in a glass network is primarily responsible
for the effect.

In the light of the present study seven vibration modes
seem to be more suited for the Raman spectrum represen-
tation of silica glass than the four vibration modes which
on the basis of the NN-CF-ICRN model.
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