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Nonresonant femtosecond second hyperpolarizabilities of intramolecular
charge-transfer molecules with great excited- and ground-state
dipole-moment differences
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The femtosecond second hyperpolarizability due to the nonresonant electronic polarization for two
intramolecular charge-transfer molecules, 6-propionyl-2-dimethylamino naphthalene and
2-anilinonaphthalene-6-sulfonic acid which possess the great permanent dipole-moment difference
between the excited state and the ground state, is obtained from the measurement of the ultrafast
change in refractive index using a time-resolved interferometer. It is found that the second
hyperpolarizability increases parabolically fromk80 34 to 4.3x 10 32esu with increasing the
dipole-moment difference from 7.7 to 40 D, and this quantitative relationship is well explained by

a quantum-mechanical equation describing the electronic second hyperpolarizability of one
molecule with the permanent dipole-moment difference. 1899 American Institute of Physics.
[S0003-695(199)02025-2

Recently, highly third-order nonlinear optical materials around 430 nm, where the molar absorption coefficient is
with a femtosecond response and no absorption have come 106% of the maximum one at 360 nfthe maximum molar
be desired for the development of the ultrafast optical-absorption coefficient of 18 400 &mM, the half width of
control device<.One of the materials satisfying these optical 2525 cni* and the electronic transition dipole moment of
properties is anticipated to be the organic compound having.5 D).> The absorption peak of the 2,6-ANS solution is at
the nonlinearity caused by intramolecular charge transfed30 nm with the long-wavelength absorption edge around
(ICT) in the nonresonant regicfri.—lowever, the investigation 397 nm where the molar absorption coefficient is 1.6% of the
of the femtosecond nonresonant dynamics of the third-ordeaximum onethe maximum molar absorption coefficient of
optical nonlinearity for molecules possessing the large ICT50880 cni/mM).
hardly has been carried out so far. Since PRODAN has a good electron donor of the dim-

In this letter, we report that ICT molecules, with the €thyl amino group and a good electron acceptor of the pro-
great difference|A u|=|ueec— pggl(=20D) between the pionyl group, gttac_hed to the 2 and 6 positions of the large
permanent electric dipole moment of the excited sjage ~ naPhthalene ring, it shows a great charge-transfer character.
and that of the ground staje,,, have the highly nonlinear The dipole-moment differendd u| between the first excited

electronic polarization even in the nonresonant region, an§€ctronic state and the ground state is known to be 20 D on
the third-order nonlinearity responds instantaneously Withinthe basis of the established measurement of the Stokes shift

the duration of the femtosecond pump pulse. Furthermore,ﬁc the absorption and emission spect@imilarly, 2,6-ANS

is found experimentally that the angular-averaged second h éagoi(?%?gcﬁfr?tg;:&g?rO(f)ft:;bgsﬁgz;f‘emé?gu%ﬂ::gfﬁg d to
perpolarizability (y) of the molecule indicates a parabolic the 2 and 6 positions of the naphthalene ring, and hence

dependence as an increasing function of the dipole-moment

. — 4
difference|Au| over the wide range frorA u|=5 to 40 D. indicates a largéA ;| =40D.
Co L The apparatus for the measurement of the femtosecond
The large ICT compounds studied in this investigation

; : . time-dependent third-order nonlinearity using a time-
are 6-propionyl-2-dimethylamino naphthaleiBRODAN) . .
and 2-anilinonaphthalene-6-sulfonic acig,6-ANS). They resolved interferometer with a heterodyne pump and probe

X : technique is the same as the previously employed one, ex-
were obtained from Molecular Probes, Inc. Their ultrafast q P y ploy

) . ) . cept for some point3® 100 fs pulses at 780 nm with the
third-order nonlinear optical responses were examined fo&verage power of 850 MW at a 100 MHz repetition rate were
the sample solutions dissolved in ethafBtOH) at the di-

) . generated from a Kerr-lens mode-locked Ti:sapphire laser.
lute concentration. The absorption peak of the PRODAN SO jinearly polarized laser output beam was split in a strong

lution is at 360 nm with the long-wavelength absorption edgepump-pulse beam and a weak pulse be@m). The latter
beam, furthermore, was split in a probe pulse beam and a
3Electronic mail: mikio@eng.hokudai.ac.jp reference pulse beaf®:4) to compose of the time-division
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1 T % T TABLE I. Third-order nonlinear optical parameters and permanent electric
Fi} dipole-moment differences between excited and ground states for different
S !\ «— Flint glass ICT molecules.
/ 7.04-mM | | x /@lesy) <y, >(esu) [Aui(D)
> H o
= i : \ PRODAN/EtOH] PRODAN 5710 49%10% 20
7} i A N(CHs)2z
] | 7.04 mM
E: L ; : d (704m )CHaCHz(ID
£ 0
% 0.5 1.14-mm ; 2,6-ANS H 81X10M 43x10% 40
5 H 1.14 mM N
$ L 2,6—ANS/EtOH:, ( ) o
= :
% DEANST 5X10% 77
= (CHsCH2)2N<Q)- CH=CH-NOz

known to indicate the instantaneous respohs&This result
delay time < (fs) of the instantaneous change in refractive index in the femto-
second time region suggests that the nonlinear response mea-
FIG. 1. Phase-change signals from 7.04 mM PRODAN solutotid line), sured for the two ICT-molecule solutions originates from
1.14 mM 2,6-ANS solutiorithick solid ling, flint glass as a referen¢dot-  only the nonlinear electronic polarization in the off-resonant
ted ling and ethanolic solvertiashed ling region (not from the polarization due to the molecular mo-
tion and/or the intermolecular interaction such as the

interferometer. The carrier frequency of the probe pulse wathiophene solution”**°The third-order nonlinear electronic
up-shifted by 39.0 MHz using an acousto-optic modulator Susceptibility| x{*| of only ICT molecules at the measured
and that of the reference pulse was also up-shifted by 40.6oncentration is evaluated from the following equation for
MHz using another modulator. Their diffraction efficiencies the nonlinear response faster than the pulse employed for the
were 60%—65%, and their linear polarizations were paralIelT“"lfi‘SUr"'m”'erf’f?’ll’12

to each other. Both the pl_JIse .durati.ons were broadgned to |X|(3)|:{ng|/E|—R|X(R3)|/(ngR|-|/E)}><(SIT/Sga)a (1)

385 fs due to group-velocity dispersion of the materials of

acousto-optic modulators. The probe pulse was time delayeghere the integral signals arg/=[”_S(r)dr for the

(7) with respect to the 1.14 kHz chopped pump pulse by @ample solution§i=1/E for S;e(7)], the ethanolic solvent
displacementmeter-attached stepping motor. After the adi=E for Sg(7)] and the reference glags=R for Sg(7)],
vanced reference pul$830 ps ahead of the probe pulssd ~ S' =Sie—St., the linear refractive indices argyz=1.362

the probe pulse were copropagated, these pulses and tfd the sample solutions ana,z=2.148 for the reference
pump pulse were noncollinearly focussed on the sample s@lass, and the sample and reference lengths laje
lution in a 1-mm-thick quartz cellor a reference sample of a =1.0mm and.g=1.2 mm. The optical densitfOD) of the
high-refractive-index flint glass with a 1.2 mm thickneby 1 mm sample solution at the measured wavelength of 780
a 10 cm focusing lens. Passing through the sample, them is unmeasurably small (GD0.01). The subscripts’E,
pump_pu|se_induced phase_change probe pu]se and the ref&_and R refer to the sample solution, the ethanolic solvent
ence pulse were collimated by another 10 cm focusing lengnd the reference glass, respectively. The third-order nonlin-
and overlapped in space and time at a fast response photodiar susceptibility x$| of the reference flint glass with iso-
ode. The 1 MHz beat signal of the probe-reference pulset§opic structure is 10810 ®esu in the nonresonant
was detected by an FM ham-radio receiver. The outpulfeillionfw’8

yields an electric signal proportional to the derivative of the ~ The use of the equation relating the®’| to the molecu-
probe-pulse phase change with respect to the time. Since ther ~ second  hyperpolarizability, |x®|=N{(n3,c
pump pulse was chopped at 1.14 kHz, the receiver output 2)/34*(y,), enables us to determine the angular-averaged
was modulated at the same frequency. By integrating theéecond hyperpolarizabilitffy,) of the single ICT moleculé®
modulated output through a lock-in amplifier, the probe-Here,N is the number density which is obtained from the
pulse phase change was measured at each delayrtime  measured dilute concentration.

Figure 1 shows the typical sign&|,z(7) of the femto- Table | summarizes the susceptibilityy3)|=5.7
second time-dependent phase chafsgdid line) in the non- X 10 “esu obtained for the 7.04 mM PRODAN after the
resonant region for the 7.04 mM dilute solution of PRODAN subtraction of the ethanolic contribution, the susceptibility
and the signalS;g(7) (thick solid ling for the 1.14 mM  |x§)s|=8.1x10"*esu for the 1.14 mM 2,6-ANS, and their
dilute solution of 2,6-ANS. In addition, the sign&g(7) corresponding second hyperpolarizabilitie§ypr)=4.9
(dotted ling for the reference flint glass and the sigBal7) X 10 *3esu and(yans) =4.3x 10 *2esu, as well as their
(dashed lingfor the ethanolic solvent are shown. The refer-dipole-moment differenceA wpgr=20D andA pans=40D.
ence signal was measured two times before and after the addition, the result of théype)=5x10 3*esu and the
measurements of the sample signal and the solvent signal,upe=7.7 D obtained by other measurements in the non-
and its averaged result is shown in Fig. 1. Both the signals ofesonant region for another ICT molecule, (M-
the two ICT-molecule solutions respond instantaneouslydiethylamind- 3 -nitrostyrene DEANST), is given®*4 The
within 385 fs durations of the probe and reference pulses, a®rmer value is the one obtained for DEANST dissolved in

well as the case of the reference glass which is alreadiN-dimethylformamide in the nonresonant region using a
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[x 107 ICT-molecule solution (3—-7 D). For example, the
. . . PRODAN/EtOH solution indicatebuqd|=4.5D.2 This de-
<y, > [X107] o viation may be because tHgy| and theAE,, have been
400-<X'03 [ ® assumed to be not dependent on each ICT molecule. It
esu] should be noted that the quantitative result obtained by the
macroscopic femtosecond experiment directly gives a clean
evidence over the wide range of the dipole-moment differ-
ence for the microscopic prediction from the quantum-
mechanical Eq(2) for noncentrosymmetric molecules. In
addition, this experimental finding provides good guidelines
on the practical selection of optical materials possessing an
ultrafast response ), a highly third-order nonlinearity
(x®) and no absorptiofie), that is, a large figure of merit
of xarg.t
In conclusion, the second hyperpolarizability due to the
nonresonant electronic polarization of the ICT molecule pos-
s . s ! sessing the great permanent dipole-moment difference be-
0 20 40 tween the excited state and the ground state has been evalu-
dipole moment difference A u [D] ated through the measurement of the ultrafast change in
refractive index for the two ICT-molecullPRODAN and
FIG. 2. Dependence of second hyperpolarizabilify,f) on permanent 2,6-ANS solutions using the femtosecond time-resolved in-
electric dipole-moment difference between excited and ground stajgs  terferometer. It has been found that the second hyperpolariz-
for different ICT moleculesinset (Ax)? plot of (). ability measured in the femtosecond time region rapidly in-
creases from 510 3 to 4.3x10 *?esu with a parabolic
femtosecond time-resolved degenerate four-wave mixingharacter as the dipole-moment difference increases over the
spectroscopy® The latter value is the one obtained for wide range from 7.7 to 40 D. Furthermore, it has been con-
DEANST doped in polgmethyl methacrylateusing an elec- firmed that the quantitative relationship of this experimental
troabsorption spectroscop§which is slightly smaller than finding is well explained by the quantum-mechanically de-
the already known one of a similar ICT molecule(MN-  rived equation which describes the electronic second hyper-
dimethylaming- B -nitrostyrenet® Figure 2 shows the\x,  polarizability of one molecule possessing the permanent
dependence of théy,) for different ICT molecules. It is dipole-moment difference.
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