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Theory of ultrabroadband optical pulse generation
by induced phase modulation
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Generation of an ultrabroadband optical pulse with a fluent frequency dependency of the phase is important
for creating a monocyclelike optical pulse and for shaping multiwavelength optical pulses. A previously pro-
posed method that uses induced phase modulation between a femtosecond fundamental wave v1 and its
second-harmonic wave v2 5 2v1 in a fused-silica fiber is applied to a capillary fiber filled with noble gas.
Analytic results of chirps without dispersion but with loss in the fiber are shown, and the optimum conditions
relating to a delay time between two pulses and to input peak powers are found for fully covering the spectrum
between v1 and v2 . Furthermore, numerical calculations, including dispersion effects of the fundamental
and the second-harmonic waves from a Ti:sapphire laser-amplifier system with experimentally realizable pa-
rameters, are presented. These calculations show that it is possible to generate an ultrabroadband optical
pulse whose spectrum ranges from 300 to 900 THz (330 to 1000 nm) with quasi-linear chirp by this method.
© 1999 Optical Society of America [S0740-3224(99)01604-5]
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1. INTRODUCTION
Recently, generation of an ultrabroadband optical pulse
that uses induced phase modulation (IPM) in an optical
glass fiber was proposed.1,2 In this method two or three
optical pulses, one fundamental and others generated by
second-harmonic generation or optical parametric ampli-
fication, were propagated inside a single-mode silica fiber
at the same time; IPM, as well as self-phase modulation
(SPM), among the pulses was used to broaden the spec-
trum of each pulse. Subsequently the phase of the com-
bined pulses with quasi-linear chirp was compensated for
by a spatial phase modulator. It was predicted that a
monocyclelike optical pulse could be generated with this
method.

Fused-silica fibers have conventionally been used to
broaden the spectrum of an optical pulse through disper-
sive SPM, and one of the shortest pulses to date was gen-
erated by this method.3 Optical propagation loss of a
fused-silica fiber is negligibly small for small distances.
However, the damage threshold of fused-silica fiber is
relatively small, which makes applications requiring
0740-3224/99/040662-07$15.00 ©
large energies difficult. The maximum energy that can
be allowed in this method is ;40 nJ for a 13-fs input
pulse.4

In 1995 a high-powered, ultrabroadband continuum op-
tical pulse was generated by multichannel propagation of
a terawatt femtosecond near-infrared pulse in a long mul-
timode capillary fiber filled with noble gas.5 However,
the phases between frequency components of the gener-
ated optical wave were not constant in this method, since
multichannel and multimode propagation was employed.
More recently, single-mode capillary fibers filled with
noble gases were used to broaden the spectrum of optical
pulses through dispersive SPM in single-channel
propagation,6,7 and sub-5-fs, high-powered pulses were
generated with this technique.7 Because of the chemical
stability of the noble gases, the damage threshold is rela-
tively high, and the maximum energy that can be allowed
is ;10 mJ. However, since the linear refractive index of
the noble gas (.1.0) is smaller than that of the glass used
in the capillary wall, the optical field is not completely
confined in the fiber during propagation. Hence loss al-
1999 Optical Society of America
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ways occurs in this method. In addition the nonlinear re-
fractive index and second-order dispersion of the noble
gas are smaller than those of fused silica by a factor of
thousands.

In this paper the analytic equations describing the
chirp of each pulse in the case of two-pulse propagation in
a single-mode capillary fiber are derived when dispersion
is neglected. By use of these equations, effects of a delay
time between two pulses (a femtosecond fundamental
wave and its second-harmonic wave) for spectrum broad-
ening are examined, and the optimum delay time and the
input peak powers for fully covering the spectrum be-
tween two pulses are obtained. Furthermore, numerical
calculations including second- and third-order dispersion
terms are performed under experimentally feasible condi-
tions. Since the second-harmonic wave as well as the
fundamental wave are generated from one common fem-
tosecond pulse, the carrier-phase difference between their
waves is constant.8–11 This uniformity enables us to syn-
thesize constructively the two spectrally broadened waves
at the fiber output. A compressed pulse width is evalu-
ated after its phase is compensated for by use of a spatial
phase modulator.

2. CHIRPS WITHOUT DISPERSION
EFFECTS
Nonlinear chirps are considered in the case in which dis-
persion effects can be neglected. For a capillary fiber
with a 50-mm radius filled with argon at 3.3 atm (2.5
3 103 torr) and at 300 K, the dispersion length Ld
5 T0

2/b2 is 35.3 m for a fundamental wave (l1 5 790
nm, pulse 1) of a Ti:sapphire laser-amplifier system when
its full width at half-maximum (FWHM, TFWHM) is 30 fs
@T0 5 TFWHM /(2Aln 2) for a Gaussian pulse]. For a
second-harmonic wave (l2 5 395 nm, TFWHM 5 30 fs,
pulse 2), it is 2.46 m. As will be shown below, we con-
sider mainly a short fiber length of ;0.3 m. Thus, for
this fiber length, it can be estimated that the dispersion
effect is small and not very significant. Also, since the
experimentally observed spectra6,7 of an argon-filled fiber
taken under conditions similar to those in this paper do
not show significant asymmetry owing to self-steepening
effects, we neglect these terms in the following analysis.

We consider a case in which two optical pulses with dif-
ferent center frequencies and widths are copropagating in
a capillary fiber with a length zl whose axis is parallel to
the z direction. For each pulse i (i 5 1, 2) the electric
field (linearly polarized in the x direction) can be written
as follows:

Ei~ri , t ! 5 1/2 x̂$Fi~x, y !Ai~z, t !

3 exp@i~b0iz 2 v it 1 f0i!# 1 c.c.%, (1)

where b0i , v i , and f0i are the wave number of the propa-
gation mode, the center angular frequency, and the con-
stant phase for a pulse i and c.c. represents the complex
conjugate. Fi(x, y) represents the transverse distribu-
tion of the mode, and Ai(z, t) represents the slowly vary-
ing envelope part of the field. For convenience two time-
coordinates that move with the speed of a group velocity
for each pulse are defined as Ti 5 t 2 b1i z, where b1i is
the inverse of the group velocity of pulse i. By use of a
slowly varying envelope approximation and if dispersion
terms are neglected, Ai(z, Ti) satisfies the following
equations12,13:

]A1

]z
5 2

a1

2
A1 1 i

n2v1

c
@ f11uA1u2 1 2 f12uA2u2# A1 ,

(2)

]A2

]z
5 2

a2

2
A2 1 i

n2v2

c
@ f22uA2u2 1 2 f12uA1u2# A2 ,

(3)

where a i represents the loss, n2 is the nonlinear refrac-
tive index, and c is the speed of light. fij is the mode
overlap integral between transverse modes of pulses i and
j. Below these values are all assumed to be the inverse of
the core area of the fiber. The relative phase difference
between pulses (f01 2 f02) does not enter into Eqs. (2)
and (3). Thus the spectrum broadening due to IPM does
not depend on phase difference. However, it has some ef-
fects when two pulses are combined for pulse compression
as discussed in Section 6. With

Ai 5 APi expS 2
a iz
2 DUi~z, Ti!,

where Pi is the peak power of pulse i, the solutions of Eqs.
(2) and (3) are given by

Ui~z, Ti! 5 exp@if i~z, Ti!#Ui~0, Ti!.

Here the nonlinearly time-dependent phases f i are given
by

f1~zl , T1! 5
n2v1

c F f11P1uU1u2z1 eff 1 2 f12P2

3 E
0

zl

exp~2a2x !uU2~0, T1 2 xd !u2dxG ,

(4)

f2~zl , T2! 5
n2v2

c F f22P2uU2u2z2 eff 1 2 f12P1

3 E
0

zl

exp~2a1x !uU1~0, T2 1 xd !u2dxG ,

(5)

where d is the difference between the inverses of the
group velocities,

d 5 b12 2 b11 .

The first terms on the right-hand sides of Eqs. (4) and
(5) show the time-dependent phase that is due to SPM.
Because of the loss, fiber length zl is reduced to effective
length zi eff :

zi eff 5 @1 2 exp~2a i zl!#/a i .

The nonlinear chirp, which represents the instantaneous
frequency shift from the carrier frequency that is due to
the nonlinearly time-dependent phase, can be calculated
to be
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dv i 5 2
]f i

]Ti
,

where the minus signs arise from the definition of the
electric field in Eq. (1). These quantities can be calcu-
lated if the pulse shapes are specified. In this section, to
obtain the analytic formula, we assume the following
Gaussian input-pulses:

A1~0, T1! 5 AP1 exp@2T1
2/~2T01

2 !#,

A2~0, T2! 5 AP2 exp@2~T2 2 Td2!2/~2T02
2 !#;

T0i is the pulse width, where the intensity becomes 1/e,
and Td2 is the delay time of pulse 2 with respect to pulse
1. The chirps are calculated to be

dv1~zl , T1!

5
2n2v1

c
zl

T01
Xz1 eff

zl
f11t1 exp~2t1

2!P1 1
f12

d1

3 exp@22h2~t2 2 td2! 1 h2
2#P2Aph2

3 $erf~t2 2 td2 2 h2! 2 erf~t2 2 td2 2 h2 2 d2!%

1
f12

d1
exp@22h2~t2 2 td2! 1 h2

2#P2

3 $exp@2~t2 2 td2 2 h2 2 d2!2#

2 exp@2~t2 2 td2 2 h2!2#%C, (6)

dv2~zl , T2!

5
2n2v2

c
zl

T02
Xz2 eff

zl
f22~t28 2 td2!exp@2~t28 2 td2!2#P2

2
f12

d2
exp~2h1t18 1 h1

2!P1Aph1

3 $erf~t18 1 h1 1 d1! 2 erf~t18 1 h1!%

2
f12

d2
exp~2h1t18 1 h1

2!P1$exp@2~t18 1 h1 1 d1!2#

2 exp@2~t18 1 h1!2#%C. (7)

Here erf(x) 5 (2/Ap)*0
x exp(2t2)dt is an error function,

and the following quantities are defined as

t i 5 T1 /T0i , t i8 5 T2 /T0i , td2 5 Td2 /T02 , (8)

d i 5 zld/T0i , h i 5 a iT0i/2d. (9)

By defining the walk-off length Lwi as Lwi
5 T0i /udu,12,13 we can write d i 5 sgn(d)zl /Lwi and h i
5 sgn(d)aiLwi/2, where sgn(d) is 61 according to the sign
of d. Thus h i shows the estimate of the loss during the
propagation of pulse i for the walk-off length Lwi .

In Fig. 1 chirps are shown as functions of normalized
time for the case in which v1 , v2 and the group velocity
of pulse 1 is greater than that of pulse 2 (d . 0, in the
normal dispersion region). For Fig. 1 the delay time Td2
is chosen such that two pulses meet near the fiber exit
end. For v1 [Fig. 1(a)] the pulse center is at time 0, and
for v2 [Fig. 1(b)] the pulse center is at time td2
5 22.32. Also, T01 5 T02 is assumed for this figure.

In Eqs. (6) and (7) the first terms on the right-hand
sides are due to SPM, and the second and third terms are

Fig. 1. Calculated chirps versus normalized time for (a) dv1 and
(b) dv2 when dispersion terms are neglected. Solid curves show
chirps from SPM, long- and short-dashed curves show chirps
from IPM, and dotted curves show the total chirps. Pulse cen-
ters are at 0 for (a) and at 22.32 for (b). In calculations v1 is the
fundamental wave and v2 is the second-harmonic wave of a
Ti:sapphire laser system (l1 5 790 nm). These are propagated
in an argon-filled (300 K, 3.3 atm) capillary fiber with a radius of
50 mm and a length of 29.2 cm. Also, P1 5 P2 5 1.29 GW, T01

5 T02 5 30/(2Aln 2) fs (t1 5 t2 , t18 5 t28), n2 5 3.234 3 10223

m2/W, and Td2 5 241.8 fs (Td2 . 2zld) are used.



Karasawa et al. Vol. 16, No. 4 /April 1999 /J. Opt. Soc. Am. B 665
due to IPM. Significantly, the second terms appear be-
cause of the loss during propagation.

Physically, these terms can be interpreted as follows.
The intense electric field of the pulse causes an increase
in the refractive index of the medium owing to the third-
order optical nonlinearity, and its refractive-index change
is proportional to the instantaneous intensity of the pulse.
The refractive-index change causes nonlinearly time-
dependent change in the phase of the pulse. In the case
of SPM, the temporal profile of this phase is proportional
to the pulse shape. Chirp is the negative of the time de-
rivative of this phase, which yields a lower frequency shift
for the pulse leading edge and a higher frequency shift for
the pulse trailing edge [solid curves (SPM) in Fig. 1]. In
the case of IPM, the phase and the chirp depend on the
group-velocity difference between pulses and on the fiber
length. If a delay time is chosen such that 2zld , Td2
, 0 (pulse 2 leads), the center of pulse 1 passes the cen-
ter of pulse 2 inside the fiber. For pulse 1, the effect of
pulse 2 on the phase is larger at the leading edge than
that at the trailing edge as pulse 1 passes pulse 2, since
the intensity of pulse 2 decreases, owing to the loss during
propagation. This effect causes the higher frequency
shift [long-dashed curve (IPM 1) in Fig. 1(a)]. On the
other hand, for pulse 2, the effect of pulse 1 on the phase
becomes larger at the trailing edge than that at the lead-
ing edge as pulse 2 is passed by pulse 1, owing to the loss
of pulse 1. This effect causes the lower frequency shift
[long-dashed curve (IPM 1) in Fig. 1(b)]. The third terms
of Eqs. (6) and (7) are caused mainly by the imperfect
overlap between two pulses at one end of the fiber. For
Td2 . 0 (when the pulses meet near the entrance of the
fiber), the trailing edge of pulse 1 interacts with the lead-
ing edge of pulse 2. This interaction causes an increase
of the phase only at the trailing edge of pulse 1 (the lead-
ing edge of pulse 2). Thus for pulse 1 (pulse 2), the phase
is an increasing (decreasing) function with respect to
time. Thus pulse 1 (pulse 2) is frequency-shifted lower
(higher) near the center of the pulse. For Td2 . 2zld
(when the pulses meet near the exit of the fiber), the lead-
ing edge of pulse 1 interacts with the trailing edge of
pulse 2, and pulse 1 is frequency-shifted higher near the
center of the pulse [short-dashed curve (IPM 2) in Fig.
1(a)]. Also, pulse 2 is frequency-shifted lower near the
center of the pulse [short-dashed curve (IPM 2) in Fig.
1(b)]. The total chirp for each wave is given by the sum
of three terms in Eqs. (6) or (7), and its shape can be con-
trolled by changing the delay time Td2 , as is shown Sec-
tion 3.

3. DETERMINATION OF A DELAY TIME
FOR SPECTRUM BROADENING
We set v1 as the fundamental wave and v2 5 2v1 as the
second-harmonic wave. To cover the spectrum fully be-
tween v1 and v2 , we desire to maximize dv1 and 2dv2
(dv2 , 0). From Eq. (6) and Fig. 1 it can be seen that
the first (SPM) term becomes maximum at t1 5 1/A2.
For not very small d2 , the second term becomes maxi-
mum approximately at t2 5 td2 1 h2 1 d2/2, and the
third term becomes maximum approximately at t2 5 td2
1 h2 1 d2 . If Aph2 , 1, i.e., the optical field does not
become less than 1/e owing to the loss after the field
propagates over the length ApLw2 , we may ignore the
second term. By use of t2 5 T01t1 /T02 5 T01 /(A2T02) in
the last equation and Eqs. (8) and (9), the optimum delay
is given by

Td2 5 T01 /A2 2 T02h2 2 zld. (10)

From Eq. (7), similar considerations give, for the condi-
tion of maximizing 2dv2 ,

Td2 5 T02 /A2 2 T01h1 2 zld. (11)

A comparison of Eqs. (10) and (11) shows that, for small
h1 and h2 , the two conditions above can be satisfied if
both pulses have the same widths (T01 5 T02). In par-
ticular, if there are no losses (h1 5 h2 5 0), these condi-
tions can be satisfied exactly. The condition

Td2 5 T02 /A2 2 zld (12)

specifies that both pulses meet almost at the fiber exit
end.

4. REQUIRED PEAK POWERS FOR
SPECTRUM BROADENING
Here we evaluate the pulse peak powers that can broaden
the spectrum of each pulse such that spectra of these two
pulses overlap. For this purpose we use the results of
Section 3; i.e., the widths of both pulses are assumed to be
equal, and the optimal delay time is given by Eq. (10).
Also, loss terms in the chirp equations [the second terms
on the right-hand sides in Eqs. (6) and (7)] are assumed to
be small and can be ignored. However, since these terms
give chirps in the favored directions (a higher frequency
shift for dv1 and a lower frequency shift for dv2), the re-
quired peak powers obtained will be slightly larger than
the practical experimental powers. Moreover, inspection
of Eqs. (6) and (7) shows that the second and third terms
become smaller than the first terms if d1 or d2 becomes
larger than ;3. This characteristic implies that the fiber
length must be smaller than the same value to have the
effect of IPM comparable with that of SPM. Here we set
the values of d i to be 3, i.e., the fiber length zl is equal to
3Lw1 ( 5 3Lw2). Under these assumptions, the maxi-
mum chirps are given as follows:

~dv1!max 5
2n2v1

cpa2

3

d H 0.4289
z1 eff

zl
P1

1
1

3
exp@2h2~h2 1 6 !#P2J , (13)

~2dv2!max 5
4n2v1

cpa2

3

d H 0.4289
z2 eff

zl
P2

1
1

3
exp@2h1~h1 1 6 !#P1J . (14)

Here 0.4289 is the maximum of the SPM term
t i exp(2ti

2), and fij is replaced by 1/pa2 (a is the capillary
radius). For fully covering the spectrum between v1 and
v2 , we set the sum of Eqs. (13) and (14) to be v1 . This
modification gives
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H 0.4289
z1 eff

zl
1

2
3

exp@2h1~h1 1 6 !#J P1

1 H 0.8578
z2 eff

zl
1

1
3

exp@2h2~h2 1 6 !#J P2

5
cpa2

2n2

d
3

. (15)

In Section 5 the practical values of P1 and P2 will be cal-
culated for a capillary fiber filled with argon.

5. ARGON CASE
It is assumed that we employ an amplified Ti:sapphire la-
ser system with a fundamental wavelength of 790 nm and
a pulse width of 30 fs. The pulse width of the second-
harmonic wave is assumed to be 30 fs also. To calculate
dispersion and loss characteristics of the fiber propaga-
tion mode in an argon-filled capillary fiber, we assume
that the dominant propagation mode is EH11 , whose loss
is the smallest. Then the phase constant b and the field
attenuation constant a/2 are given by14

b 5
2p

l F1 2
1
2 S 2.405l

2pa D 2G ,
a

2
5 S 2.405

2p
D 2 l2

2a3

n2 1 1

~n2 2 1 !1/2 . (16)

Here l is the wavelength in the gas medium; n is the ratio
of the linear refractive indices of the external medium to
that of the internal media and is assumed to be 1.45. To
obtain the group velocity, the group-velocity dispersion,
and the third-order dispersion, it is necessary to calculate
the derivatives of the phase constant with respect to the
angular frequency. To include the effect of medium dis-
persion, pressure, and temperature, l in Eq. (16) is re-
placed by 2pc/(vn), where the linear refractive index of
gas n depends on pressure p (atm; 1 atm5735.6 torr) and
temperature T (K) as follows:15

n 5 S 2
n0

2 2 1

n0
2 1 2

pT0

p0T
1 1 D 1/2S 1 2

n0
2 2 1

n0
2 1 2

pT0

p0T D 21/2

,

where n0 is the linear refractive index under standard
conditions (p0 5 1 atm, T0 5 273.15 K) and is given by
the dispersion formula16

n0
2 2 1 5 5.547 3 1024S 1 1

5.15 3 105

l0
2 1

4.19 3 1011

l0
4

1
4.09 3 1017

l0
6 1

4.32 3 1023

l0
8 D ,

where l0 (in angstroms) is the vacuum wavelength.
For argon at T 5 300 K, p 5 3.3 atm, and a

5 50 mm, we obtain the following parameters (n2 from
Ref. 6):
n2 5 3.234 3 10223 m2/W,

l1 5 790 nm, l2 5 395 nm,

a1/2 5 1.0807 m21, a2/2 5 0.2702 m21,

h1 5 0.1051, h2 5 0.0263,

d 5 b12 2 b11

5 3.338737 3 10209 s/m 2 3.338552 3 10209 s/m

5 1.85 3 10213 s/m.

To satisfy the condition d i 5 zld/T0i 5 3, we need to
have zl 5 29.2 cm; for this fiber length the loss for the
fundamental wave is 47% and that of the second-
harmonic wave is 15%. Also, z1 eff 5 21.7 cm, and z2 eff
5 27.0 cm.

The optimal delay time from Eq. (10) is given by

Td2 /T01 5 1/A2 2 d i 2 h2 5 22.3192,

Td2 5 241.8 fs.

From Eq. (15) the minimum powers required for fully
covering the spectrum between the fundamental and the
second-harmonic waves are given by

0.298P1 1 0.480P2 5 1,

where Pi is measured in gigawatts. From this equation,
if we set P1 5 P2 , the required minimum powers are P1
5 P2 5 1.29 GW.

6. NUMERICAL CALCULATIONS
To verify the above results with the dispersion terms, nu-
merical calculations are performed. Here the program
used in Ref. 1 is slightly modified to include the second-
and the third-order dispersion terms of argon. The cal-
culated values of the second- and the third-order disper-
sion terms (b2i and b3i) are as follows:

b21 5 9.18 fs2/m, b22 5 132 fs2/m,

b31 5 91.9 fs3/m, b32 5 44.1 fs3/m.

Note that the second-order dispersion term for the fun-
damental wave (9.18 fs2/m) is much smaller than the
value (40.3 fs2/m) for a 5 80 mm with the same pressure
and temperature (cf. Ref. 7).

In the numerical calculations all the parameters shown
in Section 5 are used except for peak powers and a delay
time. Figure 2 shows the calculated spectrum with Td2
5 241.8 fs and P1 5 P2 5 1.29 GW. Figure 3 shows the
calculated spectrum with Td2 5 0 fs and P1 5 P2
5 1.29 GW. In these calculations the constant carrier
phases are set to be f01 5 0 and f02 5 2p/2. It was
found that these values do not influence the spectrum ex-
cept for the small interference part in which the highest-
frequency edge of fundamental-wave spectrum and the
lowest-frequency edge of the second-harmonic-wave spec-
trum overlap.2 Figure 4 shows the compressed pulse
whose spectrum is shown in Fig. 2. This compression is
performed by compensating for the phase of the fiber-
output composed pulse by the 256-channel spatial phase
modulator according to Ref. 1. The calculated pulse du-
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ration is 1.53 fs. In this method17 each spectral compo-
nent of the output pulse from the fiber is projected to a
different channel of the spatial phase modulator by a first
spectral–spatial converter and a lens. Then the phase at
each channel is adjusted independently to make it essen-
tially the same at every channel for pulse compression.
After this adjustment these spectral components are re-
combined by a second spectral–spatial converter and a
lens to form a final pulse. Gratings have been used for
spectral–spatial converters. However, these may not
work for ultrabroadband pulses treated here owing to the
overlap of different diffraction orders.18 Prisms can be
used here, since added nonlinear material dispersion can
be compensated for by the spatial phase modulator.19

Fig. 2. Calculated intensity, phase, and group delay versus fre-
quency of the fundamental and second-harmonic waves after
propagation through an argon-filled capillary fiber under the
condition P1 5 P2 5 1.29 GW, Td2 5 241.8 fs.

Fig. 3. Calculated intensity, phase, and group delay versus fre-
quency of the fundamental and second-harmonic waves after
propagation through an argon-filled capillary fiber under the
condition P1 5 P2 5 1.29 GW, Td2 5 0 fs.
7. DISCUSSIONS
Figure 2 shows that the spectra of fundamental and
second-harmonic waves are just overlapping at peak pow-
ers of 1.29 GW each, as is expected from the evaluation of
the required peak powers in Section 5. By comparing
Figs. 2 and 3, we can see the effect of a delay time on the
spectrum broadening. For Fig. 2 the delay time is chosen
such that both pulses meet near the fiber exit. In this
case the IPM effect tends to cover the spectrum fully be-
tween fundamental and second-harmonic waves. For
Fig. 3, on the other hand, the delay is chosen such that
both pulses meet at the fiber entrance. In this case the
IPM effect tends to broaden the spectrum in opposite di-
rections, and not much power is left around the center.

The maximum power that does not damage the me-
dium may be determined by use of the self-focusing
effect.7 For bulk argon, the maximum power may be
evaluated to be

Pc 5 l2/2pn2 5 H 3.1 GW ~l 5 790 nm!

0.77 GW ~l 5 395 nm!
,

which is smaller than the 1 GW of power employed for the
second-harmonic wave. However, a recent theoretical es-
timation has shown that for a hollow waveguide the dam-
age threshold is ;5 times larger than the bulk medium.20

Thus it is likely that pulses with 1.29-GW of peak power
can be used without damage problems.

8. CONCLUSION
Ultrabroadband optical pulse generation that uses SPM
and IPM in a gas-filled hollow waveguide has been ana-
lyzed. Analytic results of chirps without dispersion but
with loss in the fiber have been derived for the Gaussian
input pulses. By use of these equations, the optimum
conditions relating to a delay time between two pulses
and to input peak powers have been found for fully cover-

Fig. 4. Calculated intensity versus time of the compressed pulse
after its phase is compensated for by the spatial phase modula-
tor. Other parameters are the same as those of Fig. 2.
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ing the spectrum between v1 and v2 . As an example, for
the experimentally realizable parameters that use the
fundamental and the second-harmonic waves from a
Ti:sapphire laser-amplifier system in an argon-filled cap-
illary fiber, the optimum delay time and the required
pulse peak powers have been obtained. These results
have been verified by numerical calculations, including
dispersion effects. These calculations show that by this
method it is in fact possible to generate an ultrabroad-
band quasi-linear chirped optical pulse that fully covers
the spectrum between these two waves.

This technique for the generation of quasi-linear-
chirped, white-spectral pulses can be applied to optical
pulse monocyclization as well as to the realization of in-
dependently synthesized, synchronized multicolor femto-
second beams as a new optical source, such as a femtosec-
ond photon factory. Experimental verification of this
theory is under way in our laboratory.
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