グリシン／Cu（111）テンプレートにより作製した孤立フラーレン分子構造の解析と制御
 Analysis and Manipulation of Isolated Fullerene Molecules Stably Assembled on a Glycine／Cu（111）Template Structure筑波大院数理物質 ○黄 慧，金澤 研，谷中 淳，武内 修，重川 秀実
 Institute of Applied Physics，Univ．of Tsukuba，CREST－JST
 ${ }^{\circ}$ Hui Huang，Ken Kanazawa，Atsushi Taninaka，Osamu Takeuchi and Hidemi Shigekawa
 URL：http／／www．dora．bk．tsukuba．ac．jp

The self－assembly of molecular species on single crystal surfaces offers a promising way for creating highly ordered structures，such as well－defined 2D porous networks．Assemblies in such regular and open networks are interesting for templating guest atoms or molecules，which can be used for the construction of molecule－scale devices． C_{60} molecules are so mobile on metal surfaces and can easily diffuse towards the step edges at low coverage．Therefore it is difficult to obtain isolated C_{60} molecular structures．In order to overcome such problem，in this work，we first prepare a 2D glycine－based supramolecular self－assembly structure on a single crystal $\mathrm{Cu}(111)$ surface，which featuring a porous network structure．We then codeposite C_{60} molecules on the glycine network．Interestingly，we found a site－selective adsorption of fullerene within these 2D surface nanocavities．
Figure a）shows a $\mathrm{d} I / \mathrm{d} V$ image of C_{60} molecules adsorbed on glycine／ Cu surface with small coverage（ $<0.2 \mathrm{ML}$ ） observed at 5 K ．On the glycine molecular structures， C_{60} molecules exclusively adsorbed in the glycine nanomesh or the

Fig．1（a）d $/ \mathrm{d} V$ image of $\mathrm{C}_{60}(\mathrm{Vs}=-1.5 \mathrm{~V})$ ． （b and c）STM images of energetic excitation for an individual C_{60} molecule：b）before and c）after excitation． areas surrounded by molecular boundaries．This suggests that an enhanced diffusion barrier formed by glycine molecules．Apparently，the C_{60} molecules have two different states of adsorption．We have successfully manipulated a single C_{60} molecular state from one（B：brighter）state to another（D：darker）at 5 K by using STM tunneling electrons，as shown in Fig．b）and c）．

