Bandgap modulation in one-dimensional interface of MoS$_2$/WS$_2$-based semiconductor heterojunction

Yu Kobayashi1, Shoji Yoshida2, Ryuji Sakurada2, Tetsuki Saitoh1, Takashi Taniguchi3, Kenji Watanabe3, Yutaka Maniwa1, Hidemi Shigekawa2, Yasumitsu Miyata1,4,*

1Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
2Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
3National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
4JST-PRESTO, Kawaguchi, 332-0012, Japan

Interface of semiconductor heterojunctions has been one of the central topics in modern solid state physics and applications in electronics and optoelectronics. Recently, atomic layers of semiconducting transition metal dichalcogenides (TMDCs) are expected to realize novel one-dimensional state at their heterojunction interface [1-5]. However, the realization of conducting interface state still remains as an unsolved issue. Here, we report the observation of conductivity enhancement and unique bandgap modulation of the one-dimensional heterojunction interface based on bilayer TMDCs. The heterojunction is composed of bilayer WS$_2$ and vertically-stacked MoS$_2$/WS$_2$ heterostructure (Fig.1a), which can be grown on graphite by chemical vapor deposition as reported in our previous work [6]. This conductivity enhancement has never seen for the heterojunctions of monolayer MoS$_2$-WS$_2$, and monolayer-bilayer WS$_2$. Furthermore, STM/STS measurements reveal the upshift of both valence and conduction band edges and band-gap narrowing around the heterointerface (Fig.1b). This bandgap modulation could be explained by stacking mismatch due to lattice strain around the heterointerface. The present findings indicate that highly tunable electronic properties of TMDC systems provide an ideal system to realize 1D confined electronic system in the heterointerface.

Corresponding Author: Yasumitsu Miyata, Tel: 042-677-2508, E-mail: ymiyata@tmu.ac.jp

Fig.1 (a) Structure model of the present bilayer heterojunction. (b) Map of color scale dI/dV curves calculated from the spatially-resolved STS spectra.