非直交基底の成分分解

(266d) 更新

非直交基底の成分分解

数ベクトル空間 K^n に、 必ずしも直交しない基底 \set{\bm b_i} を取る。

任意のベクトル \bm x を成分分解して、

  \bm x=\sum_{i=1}^n x_i\bm b_i   (*)

と表す際の成分 \set{x_i} を求める方法を考える。

目次

逆基底

基底 \set{\bm b_i} の「逆基底」をここでは \set{\bm b_i^*} と書くことにすると、

  (\bm b_j^*,\bm b_i)=\delta_{ij}

を満たすことが逆基底の定義である*1数学的には (\bm b_j^*)^\dagger を逆基底とするのが本来であるが、ここでは分かりやすさを優先する

つまり、 \bm b_j^*

  • (\bm b_j^*,\bm b_j)=1
  • \bm b_j 以外と直交
  • 一般に \bm b_j 平行ではない
    • \bm b_j と平行になるのは、 \bm b_j 以外の基底がすべて \bm b_j と直交するときだけである
  • \set{\bm b_i} が正規直交ならば、 \bm b_j^*=\bm b_j である。

成分を求めるには

上記を満たす逆基底が求まりさえすれば、 (*)式に左から \bm b_j^* をかけることで 右辺は \bm b_j の項を残してゼロとなり、

  (\bm b_j^*,\bm x)=x_j

のように簡単に成分を求められる。

正規直交の場合には上述の通り \bm b_j^*=\bm b_j であるから、

  (\bm b_j,\bm x)=x_j

となり、線形代数II/射影・直和・直交直和#d2df2673 の結果と一致する。

逆基底の求め方(逆行列を使う)

  (\bm b_i^*,\bm b_j)=\delta_{ij}

より、 {\bm b_i^*}^\dagger を並べた行列と、 \bm b_i を並べた行列とを掛け合わせれば、

  \begin{pmatrix} \hspace{7mm}{\bm b_1^*}^\dagger\hspace{7mm}\\ {\bm b_2^*}^\dagger\\ {\bm b_3^*}^\dagger\\ {\bm b_4^*}^\dagger\\ \end{pmatrix} \begin{pmatrix} \rule{0mm}{7mm}\\ \bm b_1&\bm b_2&\bm b_3&\bm b_4\\ \rule{0mm}{7mm}\\ \end{pmatrix}= \begin{pmatrix} (\bm b_1^*,\bm b_1)&(\bm b_1^*,\bm b_2)&(\bm b_1^*,\bm b_3)&(\bm b_1^*,\bm b_4)\\ (\bm b_2^*,\bm b_1)&(\bm b_2^*,\bm b_2)&(\bm b_2^*,\bm b_3)&(\bm b_2^*,\bm b_4)\\ (\bm b_3^*,\bm b_1)&(\bm b_3^*,\bm b_2)&(\bm b_3^*,\bm b_3)&(\bm b_3^*,\bm b_4)\\ (\bm b_4^*,\bm b_1)&(\bm b_4^*,\bm b_2)&(\bm b_4^*,\bm b_3)&(\bm b_4^*,\bm b_4)\\ \end{pmatrix}= \begin{pmatrix} \delta_{11}&\delta_{12}&\delta_{13}&\delta_{14}\\ \delta_{21}&\delta_{22}&\delta_{23}&\delta_{24}\\ \delta_{31}&\delta_{32}&\delta_{33}&\delta_{34}\\ \delta_{41}&\delta_{42}&\delta_{43}&\delta_{44}\\ \end{pmatrix}=E

のように単位行列となる。すなわち、

  \begin{pmatrix} \hspace{7mm}{\bm b_1^*}^\dagger\hspace{7mm}\\ {\bm b_2^*}^\dagger\\ {\bm b_3^*}^\dagger\\ {\bm b_4^*}^\dagger\\ \end{pmatrix}= \begin{pmatrix} \rule{0mm}{7mm}\\ \bm b_1&\bm b_2&\bm b_3&\bm b_4\\ \rule{0mm}{7mm}\\ \end{pmatrix}^{-1}

の関係がある。

つまり、基底ベクトルを列ベクトルに持つ行列の、逆行列の列ベクトルが逆基底ベクトルである。

基底ベクトルは一次独立であるから、必ず逆行列が存在し、逆基底ベクトルも必ず存在することがここから分かる。

次の4つのベクトルは \mathbb{R}^4 の基底となる。

  \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 2\\2\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}

これらを列ベクトルとする行列を作り、その逆行列を求めよう。

&\begin{pmatrix} 1&2&1&0&1&0&0&0\\ 2&2&1&1&0&1&0&0\\ 3&-1&1&1&0&0&1&0\\ 4&-1&1&0&0&0&0&1\\ \end{pmatrix}\sim \begin{pmatrix} 1&2&1&0&1&0&0&0\\ 0&-2&-1&1&-2&1&0&0\\ 0&-7&-2&1&-3&0&1&0\\ 0&-9&-3&0&-4&0&0&1\\ \end{pmatrix}\sim \begin{pmatrix} 1&2&1&0&1&0&0&0\\ 0&-2&-1&1&-2&1&0&0\\ 0&-14&-4&2&-6&0&2&0\\ 0&-2&-1&-1&-1&0&-1&1\\ \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&0&1&-1&1&0&0\\ 0&-2&-1&1&-2&1&0&0\\ 0&0&3&-5&8&-7&2&0\\ 0&0&0&-2&1&-1&-1&1\\ \end{pmatrix}\sim \begin{pmatrix} 2&0&0&2&-2&2&0&0\\ 0&-6&-3&3&-6&3&0&0\\ 0&0&3&-5&8&-7&2&0\\ 0&0&0&-2&1&-1&-1&1\\ \end{pmatrix}\\&\sim \begin{pmatrix} 2&0&0&2&-2&2&0&0\\ 0&-6&0&-2&2&-4&2&0\\ 0&0&6&-10&16&-14&4&0\\ 0&0&0&-2&1&-1&-1&1\\ \end{pmatrix}\sim \begin{pmatrix} 2&0&0&0&-1&1&-1&1\\ 0&-6&0&0&1&-3&3&-1\\ 0&0&6&0&11&-9&9&-5\\ 0&0&0&-2&1&-1&-1&1\\ \end{pmatrix}

ここから、

\bm b_1^*=\frac{1}{2}\begin{pmatrix}-1\\1\\-1\\1\end{pmatrix},\ \bm b_2^*=\frac{1}{6}\begin{pmatrix}-1\\3\\-3\\1\end{pmatrix},\ \bm b_3^*=\frac{1}{6}\begin{pmatrix}11\\-9\\9\\-5\end{pmatrix},\ \bm b_4^*=\frac{1}{2}\begin{pmatrix}-1\\1\\1\\-1\end{pmatrix},\

を得る。

それぞれ、逆基底の定義を満たしていることを確認せよ。

例えば、 \bm x=\begin{pmatrix}-1\\ -4\\ 7\\ 14\end{pmatrix} と置くと、

\bm x=& \left[ \frac{1}{2} {\small \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}\cdot \begin{pmatrix}-1\\ -4\\ 7\\ 14\end{pmatrix} }\right] \begin{pmatrix}1\\2\\3\\4\end{pmatrix} + \left[ \frac{1}{6} {\small \begin{pmatrix} -1\\3\\-3\\1 \end{pmatrix}\cdot \begin{pmatrix}-1\\ -4\\ 7\\ 14\end{pmatrix} }\right] \begin{pmatrix}2\\2\\-1\\-1\end{pmatrix}\\ &+ \left[ \frac{1}{6} {\small \begin{pmatrix} 11\\-9\\9\\-5 \end{pmatrix}\cdot \begin{pmatrix}-1\\ -4\\ 7\\ 14\end{pmatrix} }\right] \begin{pmatrix}1\\1\\1\\1\end{pmatrix} + \left[ \frac{1}{2} {\small \begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix}\cdot \begin{pmatrix}-1\\ -4\\ 7\\ 14\end{pmatrix} }\right] \begin{pmatrix}0\\1\\1\\0\end{pmatrix}\\ =&2\begin{pmatrix}1\\2\\3\\4\end{pmatrix} -3\begin{pmatrix}2\\2\\-1\\-1\end{pmatrix} +3\begin{pmatrix}1\\1\\1\\1\end{pmatrix} -5\begin{pmatrix}0\\1\\1\\0\end{pmatrix}\\ =&\begin{pmatrix}-1\\-4\\7\\14\end{pmatrix}\\

が成り立ち、正しく成分分解されることを確認できる。

逆基底の求め方(外積を使う)

\set{\bm b_i} を順に横に並べ、 j 番目だけ \bm x に置き換えた次のような行列式を作り、これを K^n\to K の写像 T_j と見なす。

  T_j(\bm x)= \Bigg| \,\bm b_1\ \bm b_2\ \dots\ \underset{\overset{\wedge}{j}}{\bm x}\ \dots\ \bm b_n \Bigg|

行列式は列ベクトルに対して線形であるから、この T_j は線形写像となり、 ある 1\times n 行列 A_{Tj} を用いて

  T_j(\bm x)=A_{Tj}\bm x

の形に表せる。(行列式を展開すればこの形になるということ。)

少々脱線するが、 n-1 個の n 次元ベクトル \set{\bm b_i|2\ge i} のベクトル積 \bm b_2\times\bm b_3\times\dots\times\bm b_n は、

  \Bigg| \,\bm x\ \bm b_2\ \bm b_3\ \dots\ \bm b_n \Bigg|\,=\,(\,\bm b_2\times\bm b_3\times\dots\times\bm b_n,\,\bm x\,)

を満たすベクトルとして定義される。

この定義を用いると、

  A_{Tj}=(-1)^{j-1}\bm b_1\times\bm b_2\times\dots(j番目欠)\dots\times\bm b_n

と表せる。

n 次元のベクトル積は n-1 個のベクトルの積のみが定義される。 n-1 個以外は定義されない。

● 符号の (-1)^{j-1} は、行列式内で \bm x の列を一番左に持ってくるのに必要な互換の回数に対応する。

この A_{Tj} から、

  \bm b_j^*=\frac{1}{\overline{T_j}(\bm b_j)}\!A_{Tj}^\dagger

として \bm b_j^* を求められる。

なぜなら、

  • i\ne j のとき、 行列式内に同じ行ベクトルが2回現れるから T_j(\bm b_i)=0
  • i=j なら当然 T_j(\bm b_i)=T_j(\bm b_j)

つまり、

  T_j(\bm b_i)=T_j(\bm b_j)\delta_{ij}

ここから、

  A_{Tj}\bm b_i=T_j(\bm b_j)\delta_{ij}

  \frac{1}{T_j(\bm b_j)}A_{Tj}\bm b_i=\delta_{ij}

  \frac{1}{T_j(\bm b_j)}(A_{Tj}^\dagger,\bm b_i)=\delta_{ij}

  \bigg(\frac{1}{\overline{T_j}(\bm b_j)}A_{Tj}^\dagger,\ \bm b_i\bigg)=\delta_{ij}\\

であるから逆基底の定義と比べれば上式が正しいことを確かめられる。

上の例の \bm b_1,\bm b_2,\bm b_3,\bm b_4 に対して、

  T_1(\bm b_1)=T_2(\bm b_2)=T_3(\bm b_3)=T_4(\bm b_4)= \begin{vmatrix} 1&2&1&0\\ 2&2&1&1\\ 3&-1&1&1\\ 4&-1&1&0 \end{vmatrix}=6

  T_1(\bm x)=\frac{1}{6}\begin{vmatrix} x&2&1&0\\ y&2&1&1\\ z&-1&1&1\\ w&-1&1&0 \end{vmatrix}=\frac{1}{2}(-x+y-z+w)=\frac{1}{2}\begin{pmatrix} 1&-1&1&-1 \end{pmatrix} \begin{pmatrix}x\\y\\z\\w\end{pmatrix} より \bm b_1^*=\frac{1}{2}\begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}

  T_2(\bm x)=\frac{1}{6}\begin{vmatrix} 1&x&1&0\\ 2&y&1&1\\ 3&z&1&1\\ 4&w&1&0 \end{vmatrix}=\frac{1}{6}(-x+3y-3z+w)=\frac{1}{6}\begin{pmatrix} -1&3&-3&1 \end{pmatrix} \begin{pmatrix}x\\y\\z\\w\end{pmatrix} より \bm b_2^*=\frac{1}{6}\begin{pmatrix} -1\\3\\-3\\1 \end{pmatrix}

  T_3(\bm x)=\frac{1}{6}\begin{vmatrix} 1&2&x&0\\ 2&2&y&1\\ 3&-1&z&1\\ 4&-1&w&0 \end{vmatrix}=\frac{1}{6}(11x-9y+9z-5w)=\frac{1}{6}\begin{pmatrix} 11&-9&9&-5 \end{pmatrix} \begin{pmatrix}x\\y\\z\\w\end{pmatrix} より \bm b_3^*=\frac{1}{6}\begin{pmatrix} 11\\-9\\9\\-5 \end{pmatrix}

  T_4(\bm x)=\frac{1}{6}\begin{vmatrix} 1&2&x&0\\ 2&2&y&1\\ 3&-1&z&1\\ 4&-1&w&0 \end{vmatrix}=\frac{1}{2}(-x+y+z-w)=\frac{1}{2}\begin{pmatrix} -1&1&1&-1 \end{pmatrix} \begin{pmatrix}x\\y\\z\\w\end{pmatrix} より \bm b_4^*=\frac{1}{2}\begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix}

このように、上記と同じ結果が得られる。

直交しない空間への成分分解

全体空間が K^n=V\dot +W のように必ずしも直交しない2つの部分空間の直和で書けるとき、

V の基底を \bm b_1,\bm b_2,\dots,\bm b_m

W の基底を \bm b_{m+1},\bm b_{m+2},\dots,\bm b_n

とすれば、両者を合わせた \bm b_1,\bm b_2,\dots,\bm b_n K^n の基底となる。

対応する逆基底を \bm b_1^*,\bm b_2^*,\dots,\bm b_n^* とすると、 任意の \bm x\in K^n

  \bm x &=\sum_{i=1}^n (\bm b_i^*,\bm x)\bm b_i\\ &=\underbrace{\sum_{i=1}^m (\bm b_i^*,\bm x)\bm b_i}_{\in\,V}\ \,+ \underbrace{\sum_{i=m+1}^n (\bm b_i^*,\bm x)\bm b_i}_{\in\,W}\\ &=\bm x_V+\bm x_W

のように V 成分と W 成分とに一意に分解できる。

さらに、

  \bm x_V &=\sum_{i=1}^m (\bm b_i^*,\bm x)\bm b_i\\ &=\sum_{i=1}^m \bm b_i(\bm b_i^*,\bm x)\\ &=\underbrace{\sum_{i=1}^m \bm b_i{\bm b_i^*}^\dagger}_{P_V}\bm x\\ &=P_V\bm x

として V への射影演算子が得られる。

  P_V=\sum_{i=1}^m \bm b_i{\bm b_i^*}^\dagger

正規直交基底の時には \bm e_i^*=\bm e_i となるため、 すでに議論したとおり

  P_V=\sum_{i=1}^m \bm e_i\bm e_i^\dagger

を得る。

逆格子

固体物理において3次元空間の逆格子の公式として、

  {\bm b_1^*}'=2\pi\cdot\frac{\bm b_2\times\bm b_3}{\bm b_1\cdot(\bm b_2\times\bm b_3)}

のようなものを学ぶが、これは係数 2\pi を除けば上記の逆基底そのものである。

というのも、

  \begin{vmatrix} x&b_{2x}&b_{3x}\\ y&b_{2y}&b_{3y}\\ z&b_{2z}&b_{3z}\\ \end{vmatrix}&= (b_{2y}b_{3z}-b_{2z}b_{3y})x+ (b_{2z}b_{3x}-b_{2x}b_{3z})y+ (b_{2x}b_{3y}-b_{2y}b_{3x})z\\ &=(\bm b_2\times\bm b_3,\bm x)

であり、

  \begin{vmatrix} b_{1x}&b_{2x}&b_{3x}\\ b_{1y}&b_{2y}&b_{3y}\\ b_{1z}&b_{2z}&b_{3z}\\ \end{vmatrix}= (\bm b_2\times\bm b_3,\bm b_1)

であるためだ。

波数ベクトル \bm k が逆格子ベクトルの整数倍の和であり、

  \bm k=l{\bm b_1^*}'+m{\bm b_1^*}'+n{\bm b_1^*}'

実ベクトル \bm x が格子ベクトルの整数倍の和であるとき、

  \bm x=l'\bm b_1+m'\bm b_2+n'\bm b_3

両者の積は、

  \bm k\cdot\bm x &=(l{\bm b_1^*}'+m{\bm b_2^*}'+n{\bm b_3^*}')\cdot(l'\bm b_1+m'\bm b_2+n'\bm b_3)\\ &=2\pi(l{\bm b_1^*}+m{\bm b_2^*}+n{\bm b_3^*})\cdot(l'\bm b_1+m'\bm b_2+n'\bm b_3)\\

直交性を用いると、

  \bm k\cdot\bm x &=2\pi(ll'\bm b_1^*\cdot\bm b_1+mm'\bm b_2^*\cdot\bm b_2+nn'\bm b_3^*\cdot\bm b_3)\\ &=2\pi(ll'+mm'+nn')\\

となって、

  e^{i\bm k\cdot\bm x}=1

を得る。

格子点上で位相がぴったり揃うような平面波の波数は、 波数空間に於いて逆格子ベクトルの格子点に並ぶことが ここから分かる。

本来の逆基底

上では逆格子ベクトルとの整合性や、 直交するベクトルという感覚を重視して逆基底を列ベクトル \bm b_i^* に取ったが、 数学的にはこの \bm b_i^* のエルミート共役を逆基底 \bm b^i の定義とする。

すなわち、

  \bm b^i=(\bm b_i^*)^\dagger

である。このとき、 (\bm b_i^*,\bm x)={\bm b_i^*}^\dagger\bm x=\bm b^i\bm x であるから、 逆格子の定義は

  \bm b^i\bm b_j=\delta_{ij}

となる。このように定義された逆基底は双対基底とも呼ばれる。

質問・コメント





*1 数学的には (\bm b_j^*)^\dagger を逆基底とするのが本来であるが、ここでは分かりやすさを優先する

Counter: 1015 (from 2010/06/03), today: 7, yesterday: 0