固有値と固有ベクトル のバックアップソース(No.3)

更新

[[線形代数I]]

#contents

* 固有値問題 [#z22bc852]

** Ax と x との関係 [#e1e409d3]

正方行列 &math(A); を考える。

通常、&math(A\bm x); は元のベクトル &math(\bm x); と必ずしも平行にならない。

&math(A\bm x \ne k\bm x);

例:

&math(
A=\begin{bmatrix}
3 & 1 \\
1 & 3
\end{bmatrix}
);

&math(\bm x_1=\begin{bmatrix} 2 \\ 1 \end{bmatrix}); であれば 
&math(A\bm x_1=\begin{bmatrix} 7 \\ 5 \end{bmatrix}\ne k\bm x_1);

しかし、&math(\bm x); をうまく選ぶと &math(A\bm x\parallel\bm x); となる場合がある。

&math(\bm x_2=\begin{bmatrix} 1 \\ 1 \end{bmatrix}); であれば 
&math(A\bm x_2=\begin{bmatrix} 4 \\ 4 \end{bmatrix}=4\begin{bmatrix} 1 \\ 1 \end{bmatrix}=4\bm x_2);

&math(\bm x_3=\begin{bmatrix} 1 \\ -1 \end{bmatrix}); であれば 
&math(A\bm x_3=\begin{bmatrix} 2 \\ -2 \end{bmatrix}=2\begin{bmatrix} 1 \\ -1 \end{bmatrix}=2\bm x_3);

これらのベクトルについては、&math(A\bm x); が元のベクトル &math(\bm x); と平行になっている。

** 固有値問題 [#n8137cfa]

与えられた正方行列 &math(A); に対して、&math(\lambda);、&math(\bm x); が

&math(A\bm x=\lambda\bm x);

を満たすとき、

- &math(\lambda); を &math(A); の ''固有値'' ~
(ギリシャ文字の "ラムダ" で書くのが慣例)
- &math(\bm x); を &math(A); の固有値 &math(\lambda); に属する ''固有ベクトル''

と呼ぶ。

''固有値問題'' とは、~
与えられた正方行列 &math(A); に対して、
固有値と固有ベクトルを(すべて)求める問題である。

** どんな役にたつ? [#ueb1b3e3]

この授業でもやるように、「行列の対角化」の基礎となる。~
→ 行列の対角化は広い範囲の応用がある

特に量子力学では固有値、固有ベクトルが主要な役割を担う。

*** 注意 [#k93c0594]

&math(\bm x=\bm o); とすると、

&math(A\bm o=\lambda \bm o=\bm o);

は任意の &math(\lambda); に対して成り立ってしまう。

この ''自明な解'' &math(\bm x=\bm o); は固有ベクトルに含めない。

* 固有値問題の解法 [#z259e48c]

まずは固有値を求めよう。

&math(A\bm x=\lambda \bm x); 

が成り立つとすれば、これに単位行列 &math(I); を掛けて、

&math(A\bm x=\lambda I \bm x); 

と書ける。すると、

&math(A\bm x-\lambda I \bm x=(A-\lambda I)\bm x=\bm o);

が成立しなければならない。

行列 &math((A-\lambda I)); が正則である場合(逆行列を持つ場合)、
上式の左から逆行列を掛けると、

- (左辺)&math(=(A-\lambda I)^{-1}(A-\lambda I)\bm x=\bm x);
- (右辺)&math(=(A-\lambda I)^{-1}\bm o=\bm o);

となり、&math(\bm x=\bm o); が導かれてしまう。

すなわち、ある &math(\lambda); について行列 &math((A-\lambda I)); が正則になる時、
''固有ベクトルは存在しない''。

したがって、正則でなくなるための条件

&math(|A-\lambda I|=0); 

が ''固有ベクトルが存在するための &math(\lambda); に対する必要条件'' であることが分かる。

固有値 &math(\lambda); が満たすこの方程式は
''「行列 &math(A); の固有方程式」'' と呼ばれる。

得られた &math(\lambda); に対して、&math(A\bm x=\lambda\bm x); を変形した

&math((A-\lambda I)\bm x=\bm o);

を &math(\bm x); について解けば固有ベクトルが求まる。

>下に見るように、固有方程式を満たす &math(\lambda); 
に対しては必ず &math(\bm x); を求められる。
>
>→ 固有方程式は &math(\lambda); が固有値となるための必要十分条件である

** 手順をまとめると [#v62edec1]

固有値問題を解くための手順は次の通り:

- 固有方程式 &math(|A-\lambda I|=0); から &math(\lambda); を(いくつか)求める
- (個々の &math(\lambda); について)  &math((A-\lambda I)\bm x=\bm o); を解いて &math(\bm x); を求める

したがって、

- 一般には1つの行列 &math(A); が複数の固有値 &math(\lambda_1,\lambda_2,\lambda_3,\dots); を持つ(1つのこともある)
- それぞれの固有値には、その固有値に属する固有ベクトルが(場合によっては複数)存在する
-- &math(\lambda_1); → &math(\bm x_{\lambda_1}^{(1)}, \bm x_{\lambda_1}^{(2)}, \dots);
-- &math(\lambda_2); → &math(\bm x_{\lambda_2}^{(1)}, \bm x_{\lambda_2}^{(2)}, \dots);
-- :
-- :

** 具体例 [#r11e6ae5]

&math(
A=\begin{bmatrix}
3 & 1 \\
1 & 3
\end{bmatrix}
);

のとき、

&math(A-\lambda I&=
\begin{bmatrix}
3 & 1 \\
1 & 3
\end{bmatrix}
-
\lambda
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\\&=
\begin{bmatrix}
3 & 1 \\
1 & 3
\end{bmatrix}
-
\begin{bmatrix}
\lambda & 0 \\
0 & \lambda
\end{bmatrix}
\\&=
\begin{bmatrix}
3-\lambda & 1 \\
1 & 3-\lambda
\end{bmatrix}
);

&math(
|A-\lambda I| &=
\begin{vmatrix}
3-\lambda & 1 \\
1 & 3-\lambda
\end{vmatrix}
\\&=
(3-\lambda)^2-1^2
\\&=
(3-\lambda+1)(3-\lambda-1)
\\&=
(4-\lambda)(2-\lambda)
);

&math(
\therefore \lambda=2,4
);

固有ベクトルは &math(\lambda); のそれぞれの値に対して個別に求める。

① &math(\lambda=2); の時

&math(
(A-\lambda I)\bm x &=
\begin{bmatrix}
3-2 & 1 \\
1 & 3-2
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \bm o
=
\begin{bmatrix}
0 \\
0
\end{bmatrix}
);

&math(\bm x); を求める手順は
&math((A-\lambda I)); を係数行列とする
連立方程式を解くことに帰着する。

拡大係数行列を行に対する基本変形を用いて階段化すると、

&math(
\begin{bmatrix}
1 & 1 & 0\\
1 & 1 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 1 & 0\\
0 & 0 & 0
\end{bmatrix}
);

&math(\therefore x+y=0);

掃き出せなかった列に対応する &math(y); をパラメータに置き、&math(y=s); とすれば、

&math(x=-s);

&math(\therefore \bm x=s\begin{bmatrix}-1\\1\end{bmatrix});

同様に、

② &math(\lambda=4); の時

&math(
(A-\lambda I)\bm x &=
\begin{bmatrix}
-1 & 1 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \bm o
);

&math(
\begin{bmatrix}
-1 & 1 & 0\\
1 & -1 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 0\\
1 & -1 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 0\\
0 & 0 & 0
\end{bmatrix}
);

&math(\therefore x-y=0); そこで &math(y=t); と置けば、

&math(x=t);

&math(\therefore \bm x=t\begin{bmatrix}1\\1\end{bmatrix});

まとめると、&math(A); は、~
固有値 &math(\lambda=2); とそれに属する固有ベクトル 
&math(\bm x=s\begin{bmatrix}-1\\1\end{bmatrix});~
固有値 &math(\lambda=4); とそれに属する固有ベクトル 
&math(\bm x=t\begin{bmatrix}1\\1\end{bmatrix});~
を持つ。ただし、&math(s,t); は任意の数を表すパラメータである。

** 注意 [#w5ce0617]

固有方程式より &math((A-\lambda I)); が正則でない、すなわち
&math(\mathrm{rank}\,(A-\lambda I)<n);
が保証されている。

固有ベクトルを求める連立方程式は斉次であるため、
係数行列の rank は拡大係数行列の rank と一致することになり、
最後に得られる階段行列の最終行は必ず 
&math(0=0); の形になる。

すなわち &math(n); 列のうち掃き出せない列が必ず1列以上存在し、
解 &math(\bm x); はパラメータを含む形となる。
言い換えれば、無数の解が得られることになる。

これは、固有方程式が固有値の満たすべき必要条件であるだけでなく、
十分条件になっていることを表している(固有方程式を満たす
&math(\lambda); は必ず固有値となる)。

注)固有方程式の解を用いたにもかかわらず、連立方程式が
無数の解を持つ形にならない場合には、
どこかで計算を間違えているため見直すべきである。

* 固有方程式が解を持たない場合 [#yddfdf2e]

固有方程式が解を持たない場合があるだろうか?

例: &math(A=\begin{bmatrix}\cos \theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix});

&math(\theta\ne n\pi); の時、&math(A); は回転を表すため、
任意のベクトルが元とは異なる方向へ向くことになる~
→ すなわち、元のベクトルと平行にならない。~
→ すると、固有ベクトルは1つも存在しないはず!~
→ 固有値も存在しないはず!

&math(|A-\lambda I|=
\begin{vmatrix}
 \cos \theta-\lambda & -\sin\theta \\
 \sin\theta & \cos\theta -\lambda
\end{vmatrix} =0
);

&math((\cos \theta-\lambda)^2+\underbrace{(\sin\theta)^2}_{>\,0}=0);

&math(\sin\theta\ne 0); では、左辺第2項が正となるから、
この方程式を満たす &math(\lambda); は確かに存在しない・・・~
→ 本当?

いや、''複素数の範囲'' でなら存在する!

&math((\cos \theta-\lambda)^2=-(\sin\theta)^2);

&math(\cos \theta-\lambda=\pm i\sin\theta);

&math(\lambda=\cos \theta \pm i\sin\theta);

2つの解が得られたので場合分けをして:

① &math(\lambda=\cos \theta + i\sin\theta); の時

&math((A-\lambda I)\bm x&=
\begin{bmatrix}
 \cos \theta-\lambda & -\sin\theta \\
 \sin\theta & \cos\theta -\lambda
\end{bmatrix} \bm x
=
\begin{bmatrix}
 -i\sin\theta & -\sin\theta \\
 \sin\theta & -i\sin\theta
\end{bmatrix} \bm x\\
&=
\sin\theta \begin{bmatrix}
 -i & -1 \\
 1 & -i
\end{bmatrix} 
\begin{bmatrix}
x \\ y
\end{bmatrix} = 0
);

&math(
\begin{bmatrix}
 -i & -1 & 0 \\
 1 & -i & 0
\end{bmatrix} 
); 一行目に &math(i); を掛けてみる

&math(
= \begin{bmatrix}
 1 & -i & 0 \\
 1 & -i & 0
\end{bmatrix} 
);

&math(
= \begin{bmatrix}
 1 & -i & 0 \\
 0 & 0 & 0
\end{bmatrix} 
);

&math(x-iy=0); より &math(y=s); と置けば、

&math(x=is);

&math(\therefore \bm x=s\begin{bmatrix} i \\ 1 \end{bmatrix});

② &math(\lambda=\cos \theta - i\sin\theta); の時

&math((A-\lambda I)\bm x&=
\begin{bmatrix}
 i\sin\theta & -\sin\theta \\
 \sin\theta & i\sin\theta
\end{bmatrix} \bm x\\
&=
\sin\theta \begin{bmatrix}
 i & -1 \\
 1 & i
\end{bmatrix} 
\begin{bmatrix}
x \\ y
\end{bmatrix} = 0
);

&math(
\begin{bmatrix}
 i & -1 & 0 \\
 1 & i & 0
\end{bmatrix} 
); 一行目に &math(i); を掛けて

&math(
= \begin{bmatrix}
 -1 & -i & 0 \\
 1 & i & 0
\end{bmatrix} 
);

&math(
= \begin{bmatrix}
 1 & i & 0 \\
 0 & 0 & 0
\end{bmatrix} 
);

&math(x+iy=0); より &math(y=t); と置けば、

&math(x=-it);

&math(\therefore \bm x=t\begin{bmatrix} -i \\ 1 \end{bmatrix});

確認してみる:

&math(A\bm x=
\begin{bmatrix}
 \cos \theta & -\sin\theta \\
 \sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
 is \\  s
\end{bmatrix}
=
\begin{bmatrix}
 is\cos \theta - s\sin\theta \\
 is\sin\theta + s\cos\theta
\end{bmatrix}
=
s(\cos \theta + i\sin\theta)
\begin{bmatrix}
 i \\ 1
\end{bmatrix}
);

&math(A\bm x=
\begin{bmatrix}
 \cos \theta & -\sin\theta \\
 \sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
 -it \\  t
\end{bmatrix}
=
\begin{bmatrix}
 -it\cos \theta - t\sin\theta \\
 -it\sin\theta + t\cos\theta
\end{bmatrix}
=
t(\cos \theta - i\sin\theta)
\begin{bmatrix}
 -i \\ 1
\end{bmatrix}
);

(騙されたみたい、に感じるけれど)ちゃんとうまく行く。

* 固有方程式の解 [#nae31dc3]

** 固有方程式の次数 [#vbe8bfb8]

固有方程式 &math(|A-\lambda I|=0); は必ず &math(\lambda); の 
&math(n); 次方程式となる。

&math(
\begin{vmatrix}
a_{11} - \lambda & a_{12}         & \cdots & a_{1n} \\
a_{21}           & a_{22}-\lambda &        & \vdots \\
\vdots           &                & \ddots &         \\
a_{n1}           & \cdots         &        & a_{nn}-\lambda \\
\end{vmatrix}
);

なぜなら・・・

行列式は各行、各列から重複の無いように &math(n);
個の要素を抜き出して積を作り、
そのような積を可能な限り集めて和にした物であった。

行列式 = Σ ( n 個の要素の積 )&math(=\sum_{(i_1,i_2,\dots,i_n)}\varepsilon (i_1,i_2,\dots,i_n) a_{1i_1}a_{2i_2}\dots a_{ni_n});

したがって、行列式は対角要素を全て掛け合わせた項 

&math((a_{11}-\lambda)(a_{22}-\lambda)\dots(a_{nn}-\lambda));

を含んでいる。この項は &math(\lambda); の &math(n); 乗を含んでいる。

また他の項から、&math(\lambda); の &math(n); より大きな次数の項は出ない。

&math(|A-\lambda I|=
(a_{11}-\lambda)(a_{22}-\lambda)\dots(a_{nn}-\lambda)+);(&math(\lambda);の&math(n);次以下の項)

→ &math(|A-\lambda I|=0); は &math(\lambda); の &math(n); 次方程式である。

** 代数学の基本定理 [#keb73eae]

&math(n); 次方程式は複素数の範囲に必ず &math(n); 個の解を持つ。

したがって、それらの解を &math(\lambda_1,\lambda_2,\dots,\lambda_n); とすれば、

&math(|A-\lambda I|=(\lambda_1-\lambda)(\lambda_2-\lambda)\dots(\lambda_n-\lambda));

と因数分解できる。

** 重複解 [#ka476ac8]

&math(n); 個の解、というのは重複解を個別に数えているので、
重複解がある場合には、

&math(|A-\lambda I|=(\lambda_1-\lambda)^3(\lambda_2-\lambda)(\lambda_2-\lambda)^2\dots(\lambda_m-\lambda));

などとなって、異なる解の個数 &math(m); は &math(m<n); となる。

** 固有値の個数 [#m7713e11]

重複度を含めて必ず &math(n); 個の固有値が存在する。

** 例 [#h0720927]

&math(n); 次行列

&math(
A=\begin{bmatrix}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
);

について、

&math(|A-\lambda I| = (3-\lambda)(2-\lambda)(1-\lambda)^2);

&math(\lambda = 3, 2, 1);

の3つの異なる固有値が見つかる。

ただし、1 は2重解であるため重複度を含めると4つの固有値がある。

Counter: 382823 (from 2010/06/03), today: 66, yesterday: 0