線形代数I/教科書問/1.6 のバックアップソース(No.4)

更新

[[FrontPage]]

* 問1.6 [#h017cccf]

&math(R^3); の原点を通る平面状に2組の基底 &math(\bm{a}_1,\bm{a}_2;\bm{b}_1,\bm{b}_2); をとる。

&math(\bm{b}_1=b_{11}\bm{a}_1+b_{12}\bm{a}_2);

&math(\bm{b}_2=b_{21}\bm{a}_1+b_{22}\bm{a}_2);

と表すとき、行列 &math(\left[\begin{array}{cc}b_{11}&b_{12}\\b_{21}&b_{22}\end{array}\right]); は
逆行列を持つことを示せ。

* 回答 [#kfecfc88]

与式を変形し、行列が逆行列を持たない場合、つまり &math(b_{11}b_{22}-b_{21}b_{12}= 0); のときに &math(\bm{b}_1,\bm{b}_2); が線形従属となり、基底を為すとした仮定と矛盾することを導く。

(1)&math(b_{11}\ne 0); のとき、

&math(\bm{a}_1= (1/b_{11})\bm{b}_1 - (b_{12}/b_{11})\bm{a}_2);

&math(\bm{b}_2=(b_{21}/b_{11})\bm{b}_1 - (b_{21}b_{12}/b_{11})\bm{a}_2 +b_{22}\bm{a}_2);

&math((b_{11}b_{22}-b_{21}b_{12})\bm{a}_2=-b_{21}\bm{b}_1+b_{11}\bm{b}_2);

となり、&math(b_{11}b_{22}-b_{21}b_{12}= 0); のときこの式は

&math(-b_{21}\bm{b}_1+b_{11}\bm{b}_2=\bm{o});

で、&math(\bm{b}_1,\bm{b}_2); が一次従属であることを示す。

(2)&math(b_{11}=0); のとき、

&math(\bm{b}_1=b_{12}\bm{a}_2);

さらに場合分けして、(2.1)&math(b_{12}\ne 0); のとき、

&math(\bm{b}_2=b_{21}\bm{a}_1+(b_{22}/b_{12})\bm{b}_1);

&math(b_{21}b_{12}\bm{a}_1=b_{12}\bm{b}_2-b_{22}\bm{b}_1);

となる。

ここで &math(b_{11}b_{22}-b_{21}b_{12}= 0); と置くと、&math(b_{11}=0); より
&math(b_{21}b_{12}= 0); となって、

&math(b_{12}\bm{b}_2-b_{22}\bm{b}_1=\bm{o});

が導かれる。

(2.2)&math(b_{12}= 0); のとき、&math(\bm{b}_1=\bm{o}); となるが、
ゼロベクトルを含むベクトルの組は明らかに線形従属となる。

* コメント [#i4d163d4]

何かあれば自由にコメントを付けてください。
- 2ws5hK  <a href="http://jkttjioqjfah.com/">jkttjioqjfah</a>, [url=http://kymmriigyirm.com/]kymmriigyirm[/url], [link=http://lrpkbgzjncpl.com/]lrpkbgzjncpl[/link], http://gysamxqtfnhv.com/ -- [vsryeotwksh] &new{2010-03-10 (水) 12:19:41};
- MmELYo  <a href="http://melkprdqtwvw.com/">melkprdqtwvw</a>, [url=http://evsfjbpdcbxq.com/]evsfjbpdcbxq[/url], [link=http://pjtjfovdioqc.com/]pjtjfovdioqc[/link], http://jjwmgcmrspik.com/ -- [spspxjww] &new{2010-03-10 (水) 12:19:48};
- IVc48h  <a href="http://dgelmtrvdggx.com/">dgelmtrvdggx</a>, [url=http://bfqihsnipcot.com/]bfqihsnipcot[/url], [link=http://gnpamzyuvlov.com/]gnpamzyuvlov[/link], http://wuhoywkaqzcm.com/ -- [vwpgnisounv] &new{2010-03-16 (火) 18:45:51};
- QSBf5p  <a href="http://uymvizingpjp.com/">uymvizingpjp</a>, [url=http://vjhzknabdjdo.com/]vjhzknabdjdo[/url], [link=http://ochofhgjcqmr.com/]ochofhgjcqmr[/link], http://lommoujyooxa.com/ -- [zkjzhwvak] &new{2010-03-16 (火) 20:23:57};

#comment

Counter: 3309 (from 2010/06/03), today: 1, yesterday: 0