Atomic scale STM/STS analysis on transition metal

dichalcogenide heterostructures

<u>R. Sakurada¹</u>, S. Yoshida¹, A. Taninaka¹, Y. Kobayashi², H. Mogi¹, T. Kouyama¹, Y. Miyata², O. Takeuchi¹ and H. Shigekawa¹

¹Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan. ² Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.

Transition-metal dichalcogenide layered materials, consisting of a transition-metal atomic layer sandwiched by two chalcogen atomic layers, have been attracting considerable attention because of their desirable physical properties for semiconductor devices, and a wide variety of pn junctions, which are essential building blocks for electronic and optoelectronic devices, have been realized using these atomically thin structures. Engineering the electronic/optical properties of semiconductors by using such heterojunctions has been a central concept in semiconductor science and technology. Here, we report the first scanning tunneling microscopy/spectroscopy (STM/STS) study on the electronic structures of a monolayer WS₂/Mo_{1-x}W_xS₂ heterojunction that provides a tunable band alignment¹. Fig.1 shows a typical STM image of $Mo_{1-x}W_xS_2$ monolayer alloy with a triangular shape. Smaller bright triangular area inside monolayer is corresponds to Mo_{1-x}W_xS₂ which is surrounded by outer WS₂. Fig.2 shows the empty state STM image (Vs = +1.35V) around WS₂/Mo_{1-x}W_xS₂ heterojunction interface. Mo_{1-x}W_xS₂ side appears brighter due to lower energy of conduction band minimum (E_{CBM}) of MoS2 compared to that of WS₂. Fig. 3 shows a map of dI/dV calculated from the spatially resolved STS measured across the interface. The upper and lower edges of the band gap region, corresponding respectively to E_{CBM} and E_{VBM} , continuously shifted as a function of the distance across the interface, whose position was determined from the STM image and is indicated by the dashed line. The result clearly demonstrates that a type-II staggered gap heterojunction with a nanoscale built-in potential distribution was formed at the interface

Fig a. STM image of a $WS_2/Mo_{1-x}W_xS_2$ monolayer on graphite b. Magnification of the part of the heterojunction interface c. dI/dV profile across the heterojunction interface ^{1.} S.Yoshida, et al., Sci. Rep. 5, 14808 (2015)