Supplementary Information for

"Continuous Heteroepitaxy of Two-Dimensional Heterostructures Based on Layered Chalcogenides"

Yu Kobayashi¹, Shoji Yoshida², Mina Maruyama², Hiroyuki Mogi², Kota Murase², Yutaka Maniwa¹, Osamu Takeuchi², Susumu Okada², Hidemi Shigekawa², Yasumitsu Miyata^{1,*}

¹ Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan ² Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan

	1 27 27	2 2 9	1	5
	Flow rate for bubbling of	Flow rate for bubbling	Flow rates	Furnace
	transition metal precursors	of chalcogen precursors	of N_2/H_2	temperature
WS ₂	$(t-BuN=)_2W(NMe_2)_2,$	$(t-C_4H_9)_2S_2,$	524/6	640 ℃
	50 sccm	20 sccm	sccm	
WSe ₂	$(t-BuN=)_2W(NMe_2)_2,$	$(\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{S}\mathbf{e}_{2},$	524/6	640 ℃
	50 sccm	20 sccm	sccm	
MoS_2	$(t-BuN=)_2Mo(NMe_2)_2,$	$(t-C_4H_9)_2S_2,$	444/6	590 ℃
	100 sccm	50 sccm	sccm	
MoSe ₂	$(t-BuN=)_2Mo(NMe_2)_2,$	$(\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{S}\mathbf{e}_{2},$	494/6	640 ℃
	50 sccm	50 sccm	sccm	

Table S1. Growth parameters for WS₂, WSe₂, MoS₂ and MoSe₂ monolayers in the present study.

Figure S1. Optical microscopy images of WS₂ grown on SiO₂/Si via MOCVD (a) with and (b) without NaCl.

Figure S2. Optical microscopy images of $MoSe_2$ grown with different supply rates for the metal and chalcogen precursors. The N₂ bubbling rates through the Mo and Se precursors were (a) 50 and 50 sccm and (b) 50 and 200 sccm, respectively, and the combined N₂ and H₂ flow rate was 600 sccm.

Figure S3. (a₁) Optical image, (a₂ and a₃) PL intensity maps (1.94 to 2.07 eV and 1.77 to 1.94 eV) and (a₄) Raman spectra of a MoS₂/WS₂ heterostructure. (b₁) Optical image, (b₂ and b₃) PL intensity maps (1.94 to 2.07 eV and 1.55 to 1.77 eV) and (b₄) Raman spectra of a WSe₂/WS₂ heterostructure. (c₁) Optical image, (c₂ and c₃) PL intensity maps (1.77 to 1.94 eV and 1.46 to 1.65 eV) and (c₄) Raman spectra of a MoS₂/MoSe₂ heterostructure. (d₁) Optical image, (d₂ and d₃) PL intensity maps (1.55 to 1.77 eV and 1.46 to 1.65 eV) and (d₄) Raman spectra of a WSe₂/MoSe₂ heterostructure. (e₁) Optical image, (e₂ and e₃) PL intensity maps (1.94 to 2.07 eV and 1.46 to 1.65 eV) and (e₄) Raman spectra of a WS₂/MoSe₂ heterostructure. (f₁) Optical image, (f₂ and f₃) PL intensity maps (1.77 to 1.94 eV and 1.55 to 1.77 eV) and (f₄) Raman spectra of a MoS₂/WSe₂ heterostructure. In the PL intensity maps, red, yellow, cyan and green correspond to the intensities of the MoS₂, MoSe₂, WS₂ and WSe₂ PL peaks, respectively.

Figure S4 STM images of the MoS₂/WS₂ heterointerface from different regions. ($V_s = +1.2$ V, (a) $I_t = 0.2$ nA, (b) 0.06 nA, and (c) 0.25 nA, (d) $V_s = +1.3$ V, and $I_t = 0.1$ nA)

Figure S5. (a) STM image ($V_s = +2.2$ V, $I_t = 10$ pA), (b) color scale map of the dI/dV spectra acquired in the vicinity of the heterointerface. (c) Averaged dI/dV spectra obtained from the MoS₂ and MoSe₂ regions. In (a), the presence of bright spots in MoS₂ (dark spots in MoSe₂) is derived from the changes of local density of state by chalcogen substitution.

Figure S6. (a) Averaged dI/dV spectra obtained from the MoS₂, WS₂ and heterointerface regions. (b) Color scale map of the dI/dV spectra acquired in the vicinity of the heterointerface. (c) Calculated LDOS and (d) associated color scale map for the MoS₂/WS₂ heterostructure. In (b) and (d), the red and black dotted lines indicate the position of MoS₂/WS₂ heterointerface.

Figure S7. (a) STM image of the area around the MoS_2/WS_2 heterointerface ($V_s = -2.5$ V, $I_t = 0.1$ nA). (b) A dI/dV map acquired at a sample bias voltage of $V_s = -2.19$ V over the same area as in (a) ($V_s = -2.5$ V, $I_t = 0.1$ nA). It is noted that the inhomogeneous dots of the dI/dV signal are derived from measurement noise.

Figure S8. PL spectra of the WS_2/MoS_2 interfaces at different locations (a) within the identical grain and (b) in different triangle-shaped grains. Sharp peaks indicated by asterisks correspond to the Raman modes of the graphite substrate. (c) Plot of PL peak positions of MoS_2 and WS_2 at the interface within the same grain (blue diamonds) and in different triangle-shaped grains (red circles).

Figure S9. Unit cell of a superlattice consisting of WS_2 and MoS_2 strips with widths of 10 zigzag MoS_2 and WS_2 chains