量子力学Ⅰ/前期量子論 のバックアップ差分(No.4)
更新- バックアップ一覧
- 現在との差分 を表示
- ソース を表示
- バックアップ を表示
- 量子力学Ⅰ/前期量子論 へ行く。
- 追加された行はこの色です。
- 削除された行はこの色です。
[[量子力学I]] #contents * 量子力学以前の世界 [#xfb3d7b2] 物理学の略史: - 16世紀半ば コペルニクスの地動説 (戦国時代) - 17世紀後半 ニュートンの力学 (江戸時代) - 18世紀半ば 産業革命 - 19世紀初頭 熱力学の発展 - 19世紀半ば (明治時代) -- 分子運動論から統計力学へ -- マクスウェル方程式による電磁気学 - 19世紀末 トムソンが電子を発見 - 20世紀初頭 (大正時代) -- アインシュタインの相対性理論 この時点までに観測されていた実験結果は、ほぼすべてこれらの理論で説明できていた。 これらの理論の特徴: - 決定論的 -- 初期状態が決まれば未来永劫までの運動が決定される -- 初期状態を決めるための計測に、原理的な限界はない 量子力学以前の物理を指して「古典論」と呼ぶ。 * 古典論での認識 [#xe361be0] ** 光について [#ade58146] 電磁気学によれば、光は電磁波である。 つまり、光が通ればそこに電場 &math(\bm E(\bm x,t)); と磁場 &math(\bm B(\bm x,t)); の波ができる。 電磁波は横波なので、電場や磁場は光の進行方向に垂直な面内にできる。 波であるから、干渉や回折、散乱などの''波に特有な性質''を示す。 物理学実験でもレーザー光の回折現象を学んだ。 光のエネルギー密度や運動量密度は電場や磁場の振幅の2乗に比例するから、当然ながら''連続的な値を取りうる''。 光についてもう少し詳しくはこちら → [[量子力学I/電磁気学における光]] ** 電子について [#ra061dee] 真空中で物質を加熱したり、物質に光を当てると、その物質から負電荷が飛び出すのを確認できる。 出てきた電荷を電場や磁場の中を通すとその軌道が湾曲することから、この負電荷が''帯電した粒子''からなることが分かり、その比電荷(粒子1つあたりの電荷と質量の比)が求まる。これは物理学実験でも扱った。 さらにウィルソンの霧箱と呼ばれる装置を用いることで、箱の中の荷電粒子の数と、電荷の総量を求めることができ、そこから粒子1つあたりの電荷量が求まった。 この電荷量と比電荷から、この荷電粒子の質量が水素原子の 1/1000 程度と非常に小さいことが確認された。 (トムソンの実験 1887年) これが電子の発見とされる。((https://www.shinko-keirin.co.jp/keirinkan/kori/science/ayumi/ayumi13.html)) ** すなわち [#hc62cb2d] 光は波、電子は粒子、と考えられていた。 以下に見るように量子論では、光も、電子も、波の性質と粒子の性質との両方を示す。 → 粒子と波動の二重性 * 前期量子論 [#v12d8353] いくつかの分野で、古典論では説明できない現象が発見され、 それらを解決する課程で「量子論」が形成されていった。 - 黒体放射のスペクトル (1900年 プランク) - 光電効果 (1905年 アインシュタイン) - アルファ線の散乱 (1910年 ラザフォード) - 原子の発光スペクトル (1913年 ボーア) 括弧内は量子論により問題が説明された年。 ** 黒体放射 [#w8bc6591] 有限温度の物体は温度に依存したスペクトルの光を出す (例:赤熱する鉄など) 反射率が高い物体ではその分だけ輻射が減るので、完全な「黒体」が最もたくさん光を出す &attachref(kokutai.png,,20%); 物体から出る光のエネルギーが連続値を取る前提で黒体放射のスペクトルを理論的に導出すると、 実験値と合わないばかりか、予想される放出エネルギーは''無限大になってしまう!'' これに対して、光により運ばれるエネルギーに最小値がある(量子化されている)ことを仮定すると 黒体放射のスペクトルを理論的に導出できた。 *** 得られた結果 [#p3a65adc] 周波数 &math(\nu); (ニュー) の光が物質から運び去るエネルギーは、&math(h=6.62606957\times10^{-34}\,\mathrm{m^2 kg/s}); をプランク定数として、&math(h\nu); の整数倍である。 &math(\Delta E=h\nu); 電磁波としての光は連続的なエネルギーを運ぶはずなのに??? ** 光電効果 [#x7025b1c] 金属に紫外光を当てると、金属中の電子が外へ飛び出してくる(&ruby(こうでんし){光電子};と呼ぶ)。この現象を光電効果という。 光電効果は、当てる光の周波数 &math(\nu); が金属の種類によって決まるある値 &math(\nu_c); より大きくないと生じない。また、出てくる光電子の速度(運動エネルギー)は &math(\nu); に依存する。 + &math(\nu<\nu_c); では、光強度が強い場合にも光電子はまったく出ない。 + &math(\nu>\nu_c); では、出てくる光電子の量は光の強さに比例する。 + 光電子の運動エネルギーは &math(\nu); が大きくなると増加する。光量には依存しない。 これらの結果から、アインシュタインは光が粒子(光子)からなることを提案した。これを光量子仮説という。 - 光は粒子(=光子)の流れである - 電子が光子を1つ吸収すると &math(h\nu); のエネルギーを得る - 電子を金属内に閉じ込めているエネルギー障壁の高さ(仕事関数)を &math(W=h\nu_c); とする - &math(h\nu<W); では電子は出てこない - &math(h\nu>W); では、&math(\Delta E=h\nu-W); の運動エネルギーを持って飛び出してくる - 強い光ほどたくさんの光子が流れているから、電子もたくさん飛び出す として、実験結果を説明できる。 *** 得られた結果 [#hb91fe55] 振動数 &math(\nu); の光は1つあたり &math(h\nu); のエネルギーを持つ粒子=光子の集まりである。 またその運動量 &math(p); は &math(p=h/\lambda=\hbar k); と表せる。((特殊相対論により得られる &math(E^2=c^2p^2+m^2c^4); と、光子の質量 &math(m=0); から導出された → 参照 http://www.jsimplicity.com/ja_Report_QuantumMechanics_html/ja_Chapter3_DualityOfLightAndMatter.html 。 後にコンプトン散乱などで確かめられた)) またその運動量 &math(p); は &math(p=h/\lambda=\hbar k); と表せる(&math(\hbar=h/2\pi); である)。((特殊相対論により得られる &math(E^2=c^2p^2+m^2c^4); と、光子の質量 &math(m=0); から導出された → 参照 http://www.jsimplicity.com/ja_Report_QuantumMechanics_html/ja_Chapter3_DualityOfLightAndMatter.html 。 後にコンプトン散乱などで確かめられた)) 光の波としての性質はどこから来る??? ** 惑星型原子模型 [#re8baef5] 電子の発見により、原子はその質量のほとんどを占める正電荷を持つ部分と、 非常に軽く負電荷を帯びた電子とから構成されることが分かっていた。 1910年頃、ラザフォードは金属箔に放射線(アルファ線 = 正に帯電した粒子)を当てると、 ほとんどの粒子がそのまま箔を通り抜けるにもかかわらず、 非常に低い確率で粒子が大きな角度で散乱されることを発見した。 つまり、金属は「すかすか」だった!~ この結果は、金属箔を構成する原子の質量の大部分が非常に小さな領域に固まっていること(= 原子核が存在すること)を示している。なぜなら原子核が大きければ、散乱される確率はもっと高いはずだから。 (前提として、アルファ線の粒子に比べて電子はずっと軽いので、アルファ線は電子にぶつかっても方向を変えない。非常に小さなアルファ線の粒子と、非常に小さな原子核がぶつかったときだけ、アルファ線の方向が変化する。アルファ線の粒子の正体はヘリウム原子の原子核である。) 詳しい計算から、原子核は原子のサイズのⅠ万分の以下であることが分かった。 *** 得られた結果 [#caf37a2c] 原子の中では、非常に小さいが重い原子核の周りを、非常に軽い電子が回っている(惑星型原子モデル) 荷電粒子である電子が加速度運動(円運動)すると、電磁波を放出してエネルギーを失ってしまうはずでは??? 古典論によれば、 太陽の周りを回る惑星なら引力と遠心力とが釣り合う軌道を安定して回ることができるのに対して、 太陽の周りを回る惑星ならば引力と遠心力とが釣り合う軌道を安定して周回できるのに対して、 電荷を帯びた電子が回転運動をすれば電磁波が放出されるため、電子はすぐにエネルギーを失い、 原子核に落ち込んでしまうことが予想される。つまり古典論では惑星型原子は安定に存在できない。 ** 原子の発光スペクトル [#ca0d4c54] 孤立した原子にエネルギーを与えると、特定の波長の光を放出することが発見された。 原子は原子核と電子からなるから、 「原子のエネルギー」は原子核と電子の間の静電ポテンシャルエネルギーと 電子の持つ運動エネルギーの和で表せる。 (原子核は重いためほとんど動かず運動エネルギーは無視できる) 高いエネルギーを持った原子では、電子は原子核から遠い軌道を回ることになる。 ボーアは原子から出る光が電子が外側の軌道から内側の軌道へ飛び移る際に余ったエネルギーが光子として放出されたものであると考えた。 特定のエネルギーの光子だけが放出されるということは、 電子の軌道半径が連続的な値を取ることができず、 特定の値しか許されないことを示している。 このために電子は電磁波を出し続けてエネルギーを失うことができず、 結果的に原子が安定に存在できることになる。 *** 得られた結果 [#l95d8307] 電子の軌道が満たさなければならない条件は、 電子の運動量を &math(p);、軌道半径を &math(r); とすると、 &math(2\pi rp=nh); ここでもプランク定数 &math(h); が出てくる。 ** 電子の波 = 物質波 [#h661db2a] 波であるはずの光が光子としての側面も持つことが分かった。 1つの光子は運動量 &math(p=\hbar k); を持つ。 1つの光子はエネルギー &math(E=\hbar\omega);、運動量 &math(p=\hbar k); を持つ。 ド・ブロイは逆に、これまで粒子であるとされていた電子に ド・ブロイは逆に、これまで粒子であるとされていた電子にも角振動数 &math(\omega=E/\hbar);、 波数 &math(k=p/\hbar);、つまり波長 &math(\lambda=h/p); を持つ波としての性質があると考えると、 ボーアの量子条件が &math(2\pi r=n\lambda); すなわち「軌道の1周が波長の整数倍である」という理解しやすい形に書けることを指摘した。 すなわち「軌道の1周が電子の波長の整数倍である」という理解しやすい形に表せることを指摘した。 後に、電子が波長 &math(\lambda=h/p); を持つ波としての性質を持つことは、 後に、電子が上記のような波としての性質を持つことは、 物質に電子線を当てた際に X 線回折と同様の回折現象を生じることなどにより確かめられた。 *** 得られた結果 [#gc3021b0] 粒子と考えられてきた電子も波としての性質を持つ。 その波数は &math(k=p/\hbar); である。 その角振動数は &math(\omega=E/\hbar);、波数は &math(k=p/\hbar); である。 * 質問・コメント [#n54e9c0f] #article_kcaptcha
Counter: 50544 (from 2010/06/03),
today: 2,
yesterday: 0