群速度と波束の崩壊/メモ のバックアップ(No.8)

更新


ある位置に局在する、有限の運動量を持つ波束

LANG:mathematica
k = 10
ParametricPlot3D[
  {Re[Exp[I k x] Exp[-x^2]], Im[Exp[I k x] Exp[-x^2]], x}, 
  {x, -5, 5}, BoxRatios -> {1, 1, 3}, PlotRange -> Full,PlotStyle->{Thick,Blue}
]

Plot[
  {Re[Exp[I k x] Exp[-x^2]], Exp[-x^2], Re[Exp[I k x] ]}, 
  {x, -5, 5}, PlotRange -> Full,PlotStyle->{{Thick},{Thin},{Thin}}
]

最小波束の時間発展

 &math( \psi(x,t)&=\int_{-\infty}^{\infty}\varphi(k)\frac{1}{\sqrt{2\pi}}e^{ikx}e^{-i\omega_kt}dk\\ &=\sqrt{\frac{\sigma_{x0}}{\pi\sqrt{2\pi}}}\int_{-\infty}^{\infty}e^{-4\sigma_{x0}^2(k-k_0)^2/4+ikx-i\hbar k^2t/2m}dk\\ );

指数部を整理すると、

 &math( &-\sigma_{x0}^2(k-k_0)^2+ikx-i\hbar k^2t/2m\\ &=-\sigma_{x0}^2(1+i\underbrace{\hbar t/2m\sigma_{x0}^2}_{\xi t})k^2+\sigma_{x0}^2\{ix/\sigma_{x0}^2+2k_0\}k-\sigma_{x0}^2k_0^2\\ &=-\sigma_{x0}^2\left[\sqrt{1+i\xi t}\ k-\frac{ix/\sigma_{x0}^2+2k_0}{2\sqrt{1+i\xi t}}\right]^2+ \frac{\sigma_{x0}^2\{ix/\sigma_{x0}^2+2k_0\}^2}{4(1+i\xi t)}-\sigma_{x0}^2k_0^2\\ );

2項目以降は、

 &math( &\frac{\sigma_{x0}^2\{ix/2\sigma_{x0}^2+k_0\}^2}{1+i\xi t}-\sigma_{x0}^2k_0^2\\ &=\frac{-x^2/4\sigma_{x0}^2+ik_0x+\sigma_{x0}^2k_0^2}{1+i\xi t}-\sigma_{x0}^2k_0^2\\ &=\frac{-x^2/4\sigma_{x0}^2+ik_0x-i\overbrace{\sigma_{x0}^2k_0^2\xi}^{\omega_{k0}} t}{1+i\xi t}\\ &=\frac{-x^2/4\sigma_{x0}^2+i(k_0x-\omega_{k0} t)}{1+i\xi t}\\ );

であるから、

 &math( \psi(x,t)&=\sqrt{\frac{\sigma_{x0}}{\pi\sqrt{2\pi}}} \frac{\exp\left[\frac{-x^2/4\sigma_{x0}^2+i(k_0x-\omega_{k0} t)}{1+i\xi t}\right]}{\sigma_{x0}\sqrt{1+i\xi t}} \underbrace{\int_{-\infty}^{\infty}e^{-\sigma_{x0}^2\left[\sqrt{1+i\xi t}\ k-\frac{ix/\sigma_{x0}^2+2k_0}{2\sqrt{1+i\xi t}}\right]^2}\left(\sigma_{x0}\sqrt{1+i\xi t}\ dk\right)}_{\sqrt{\pi}}\\ &=\sqrt{\frac{1}{\sqrt{2\pi}\sigma_{x0}(1+i\xi t)}}\exp\left[\frac{-x^2/4\sigma_{x0}^2+i(k_0x-\omega_{k0} t)}{1+i\xi t}\right]\\ );

ただし、 \xi=\frac{\hbar}{2m\sigma_{x0}^2} \omega_0=\frac{\hbar k_0^2}{2m}

このとき、

 &math( |\psi(x,t)|^2&=\frac{1}{\sqrt{2\pi}\sigma_{x0}\sqrt{(1-i\xi t)(1+i\xi t)}} \exp\left[\frac{-x^2/4\sigma_{x0}^2-i(k_0x-\omega_{k0} t)}{1-i\xi t}\right] \exp\left[\frac{-x^2/4\sigma_{x0}^2+i(k_0x-\omega_{k0} t)}{1+i\xi t}\right]\\ &=\frac{1}{\sqrt{2\pi}\sigma_{x0}\sqrt{1+\xi^2 t^2}} \exp\left[\frac{-x^2/2\sigma_{x0}^2+2(k_0x-\omega_{k0}t)\xi t}{1+\xi^2t^2}\right]\\ &=\frac{1}{\sqrt{2\pi}\sigma_{x0}\sqrt{1+\xi^2 t^2}} \exp\left[\frac{-x^2/2\sigma_{x0}^2+2(k_0x-\hbar k_0^2 t/2m)\hbar t/2m\sigma_{x0}^2}{1+\xi^2t^2}\right]\\ &=\frac{1}{\sqrt{2\pi}\sigma_{x0}\sqrt{1+\xi^2 t^2}} \exp\left[\frac{-x^2+(2x-\hbar k_0 t/m)\hbar k_0 t/m}{2\sigma_{x0}^2(1+\xi^2t^2)}\right]\\ &=\frac{1}{\sqrt{2\pi}\sigma_{x0}\sqrt{1+\xi^2 t^2}} \exp\left[\frac{-\{x-(\hbar k_0/m) t\}^2}{2\sigma_{x0}^2(1+\xi^2t^2)}\right]\\ );

群速度の導出

\varphi(k) が主に k_0-\Delta k\le k\le k_0+\Delta k にのみ値を持つものとし、 さらにこの範囲で \omega_{k_0+\delta k}=\omega_{k_0}+\frac{\PD\omega_k}{\PD k}\delta k と近似できるならば、

 &math( \psi(x,t) &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty dk\,\varphi(k)e^{i(kx-\omega_k t)}\\ &=\frac{1}{\sqrt{2\pi}}\int_{k_0-\Delta k}^{k_0+\Delta k} dk\,\varphi(k)e^{i(kx-\omega_k t)}\\ &\sim\frac{1}{\sqrt{2\pi}}\int_{-\Delta k}^{\Delta k} d\delta k\ \varphi(k_0+\delta k) \exp \Big[i\Big\{\big(k_0+\delta k\big)x-\big(\omega_{k_0}+\frac{\PD\omega_k}{\PD k}\delta k\big)t\Big\}\Big]\\ &=\frac{e^{i(k_0x+\omega_{k0}t)}}{\sqrt{2\pi}}\underbrace{\int_{-\Delta k}^{\Delta k} d\delta k\ \varphi(k_0+\delta k) \exp \Big[i\delta k\Big(x-\frac{\PD\omega_k}{\PD k}t\Big)\Big]}_{f(x-\PD\omega_k/\PD k\cdot t)\ の形になっている}\\ &=\frac{e^{i(k_0x+\omega_{k0}t)}}{\sqrt{2\pi}}f\Big(x-\frac{\PD\omega_k}{\PD k}t\Big) );

したがって、ある複素関数 f(x) に対して、

 &math(

\psi(x,t)=\frac{1}{\sqrt{2\pi}}\Bigf\Big(x-\frac{\PD\omega_k}{\PD k}t\Big)\Big

);

と書ける。すなわち、 \psi(x,t) の包絡線は群速度 v_G=\left .\frac{\PD\omega_k}{\PD k}\right|_{k_0} で移動する。

一方、 f(\ ) の持つ位相により多少の変化を受ける物の、 全体としての位相速度は f(\ ) の前の係数部分 e^{i(k_0x+\omega_{k0}t)} により決まり、 v_\phi=\frac{\omega_{k_0}}{k_0} となることも分かる。

群速度と位相速度

LANG:mathematica
F[x_, t_, k_, s_, h2m_] := 
  Sqrt[Sqrt[2 Pi] s (1 + I h2m t / s^2)]^(-1) 
    Exp[(-x^2/(2 s)^2 + I (k x - k^2 h2m t))/(1 + I h2m t / s^2)]

Animate[
  Plot[ 
    Re[F[x, {t, 0, 2}, 5, 0.7, 1]] // Evaluate, {x, -2, 30}, 
    PlotRange -> {-0.7, 0.7}, PlotPoints -> 200
  ], 
  {t, 0, 2}
]

Counter: 7504 (from 2010/06/03), today: 1, yesterday: 0