量子力学Ⅰ/不確定性原理 のバックアップソース(No.7)

更新

[[量子力学Ⅰ/波動関数の解釈]]

#contents

* 同時固有関数 [#hb461116]

これまでことある毎に「量子力学においては位置や運動量などの物理量は確率的にしか決まらない」
と話してきた。

ただしこれには例外があって、「物理量演算子の固有関数」 については物理量が確定値を取るのであった。

もし波動関数 &math(\psi); が物理量 &math(\hat\alpha); と &math(\hat\beta); 
の「同時固有関数」(両方の固有関数)であれば、物理量 &math(\alpha,\beta); 
はどちらも確定値を取ることになる。

>例:~
完全に自由な電子に対する運動量の固有関数は、同時にハミルトニアンの固有関数でもあるから、
&math(\bm p=\hbar \bm k,\epsilon=\hbar^2k^2/2m); は同時に確定値を取る。

&math(\hat\alpha\psi=\lambda_\alpha);、&math(\hat\beta\psi=\lambda_\beta); とすれば

 &math(\hat\alpha\hat\beta\psi=\hat\alpha\lambda_\beta\psi=\lambda_\alpha\lambda_\beta\psi);

 &math(\hat\beta\hat\alpha\psi=\hat\beta\lambda_\alpha\psi=\lambda_\beta\lambda_\alpha\psi);

であるから、

 &math((\hat\alpha\hat\beta-\hat\beta\hat\alpha)\psi=0);

となる。

したがって、任意の &math(\psi); に対して 
&math((\hat\alpha\hat\beta-\hat\beta\hat\alpha)\psi\ne 0); であるならば、同時固有関数は存在しない。

例えば、&math(x,\hat p_x); の同時固有関数や、&math(\hat l_x,\hat l_y); の同時固有関数などは存在しない。
一方、&math(\hat{l^2}); と &math(\hat l_z); は交換するから、これらの同時固有関数は存在する。

* 位置と運動量 [#b3565353]

 &math(
(x\hat p-\hat px)\psi
&=\left(x\frac{\hbar}{i}\frac{\PD}{\PD x}-\frac{\hbar}{i}\frac{\PD}{\PD x}x\right)\psi\\
&=-i\hbar\left\{x\frac{\PD\psi}{\PD x}-\frac{\PD}{\PD x}(x\psi)\right\}\\
&=-i\hbar\left\{\cancel{x\frac{\PD\psi}{\PD x}}-\psi-\cancel{x\frac{\PD\psi}{\PD x}}\right\}\\
&=i\hbar\psi
);

すなわち、

 &math(x\hat p-\hat px=i\hbar\ne 0);

であるから、&math(x); と &math(\hat p); の同時固有関数は存在せず、
両者が同時に決定されるような状態は存在しない。

例えば粒子が &math(x=x_0); に存在する、という位置の固有状態は、

 &math(\varphi_{x=x_0}(x)=\delta(x-x_0));

であるが、このデルタ関数を指数関数の積分表示に直せば、

 &math(
\varphi_{x=x_0}(x)=\frac{1}{2\pi}\int_{-\infty}^\infty e^{ik(x-x_0)} dk
);

となり、この状態はあらゆる運動量 &math(p=\hbar k); の固有関数 &math(e^{ikx});
が均等な重みで重ね合わされた物になっている。つまり運動量の測定値は '''完全に''' 不確定になる。

すなわち、この状態について &math(\sigma_x=0);、&math(\sigma_p=+\infty); である。

逆に運動量が確定値 &math(p=p_0); を取る状態は、

 &math(\varphi_{p=p_0}(x)=e^{ip_0x/\hbar}/\sqrt\{2\pi\});

だが、このとき

 &math(|\varphi_{p=p_0}(x)|^2=1/2\pi);

より、位置に対する確率密度は全空間で一定値を取り、
&math(x); 座標の測定値は '''完全に''' 不確定になる。
(そのためこの関数は通常の意味では規格化できない)

すなわち、&math(\sigma_x=+\infty);、&math(\sigma_p=0); である。

この両極端の場合を除けば &math(\sigma_x); も &math(\sigma_p); も有限値を取る。
以下のように、このとき必ず

 &math(
\sigma_x\cdot\sigma_{p_x} \ge \frac{\hbar}{2}
);

となることを示せる。

* 不確定性の導出 [#g5fe668e]

一般に、エルミート演算子 &math(\hat\alpha,\hat\beta); に対して、

 &math(\sigma_\alpha\sigma_\beta\geqq \left|\frac{\langle\hat\alpha\hat\beta-\hat\beta\hat\alpha\rangle}{2}\right|);

であること、すなわち、

 &math(\langle\hat\alpha\hat\beta-\hat\beta\hat\alpha\rangle\ne 0);

のとき、&math(\sigma_\alpha); と &math(\sigma_\beta); を同時にゼロにはできないことを証明する。

 &math(
I(\lambda)
&\equiv\int \left|\Delta \alpha\psi+i\lambda\Delta \beta\psi\right|^2dx\\
);

と置けば、

 &math(I(\lambda)&=\int \left\{(\Delta \alpha+i\lambda\Delta \beta)\psi\right\}^*\left\{(\Delta \alpha+i\lambda\Delta \beta)\psi\right\}dx\\
&=\int \psi^*(\Delta \alpha-i\lambda\Delta \beta)(\Delta \alpha+i\lambda\Delta \beta)\psi\,dx\\
&=\int \psi^*\left\{\Delta \alpha^2+i\lambda(\Delta \alpha\Delta \beta-\Delta \beta\Delta \alpha)+\lambda^2\Delta \beta^2\right\}\psi\,dx\\
&=\langle\Delta\alpha^2\rangle+i\lambda\langle\Delta\alpha\Delta\beta-\Delta\beta\Delta\alpha\rangle+\lambda^2\langle\Delta\beta^2\rangle\\
&\geqq 0
);

が任意の &math(\lambda); に対して成り立つことになり、判別式は負になるはずである。

 &math(
&-\langle\Delta\alpha\Delta\beta+\Delta\beta\Delta\alpha\rangle^2
-4\langle\Delta\alpha^2\rangle\langle\Delta\beta^2\rangle\leqq 0\\
);

&math(\langle\Delta\alpha\Delta\beta+\Delta\beta\Delta\alpha\rangle); は純虚数になるので、

 &math(
&4\langle\Delta\alpha^2\rangle\langle\Delta\beta^2\rangle\geqq 
|\langle\Delta\alpha\Delta\beta+\Delta\beta\Delta\alpha\rangle|^2
);

 &math(
\sigma_\alpha\sigma_\beta=\sqrt{\langle\Delta\alpha^2\rangle\langle\Delta\beta^2\rangle}\geqq \left|\frac{\langle\Delta\alpha\Delta\beta-\Delta\beta\Delta\alpha\rangle}{2}\right|
);

さらに、

 &math(
\Delta\alpha\Delta\beta-\Delta\beta\Delta\alpha&=
(\hat\alpha-\langle\alpha\rangle)(\hat\beta-\langle\beta\rangle)-
(\hat\beta-\langle\beta\rangle)(\hat\alpha-\langle\alpha\rangle)\\
&=\hat\alpha\hat\beta-\hat\beta\hat\alpha
);

であるから、

 &math(\sigma_\alpha\sigma_\beta\geqq \left|\frac{\langle\hat\alpha\hat\beta-\hat\beta\hat\alpha\rangle}{2}\right|);

&math(\hat\alpha=x,\hat\beta=p); のとき、&math(\hat\alpha\hat\beta-\hat\beta\hat\alpha=i\hbar); より、

 &math(\sigma_x\sigma_p\geqq \frac{\hbar}{2});

同様に、

 &math(\sigma_{l_x}\sigma_{l_y}\geqq \left|\frac{\hbar\langle l_z\rangle}{2}\right|);


* 不確定性原理 [#u6bedd3d]

「不確定性原理」は上記のように、
「&math(x); と &math(p_x); が同時に正確に定まるような状態は存在しない」という原理である。

ただし、この言葉は3つの異なる意味で使われるため注意せよ。

+ &math(x); と &math(p_x); が両方とも正確に定まるような量子状態は存在しない
+ 粒子の &math(x); と &math(p_x); を両方とも正確に設定することはできない
+ 測定前の状態に対して &math(x); と &math(p_x); を両方とも正確に測定する手段が存在しない

1. について、計算の詳細は後述するとして、
シュレーディンガー方程式より導かれる結果は次のようになる。

どんな波動関数に対してもこの不等式が成り立つことは、
そもそも電子自身が「上記の不等式以上に定まった位置や運動量を持つことがない」
ことを示している。

これは 2. と密接に関係していて、

3. は例えば、粒子の位置を測定するためにどんな優れた手法を採用したとしても、
その測定は粒子の運動量にある一定の撹乱を与えてしまうため、
続けて運動量を測定した際に誤差を生じる。
といった内容で、 1., 2. とは別の問題であるがしばしば混同されてきた。

実際、この不確定性原理はハイゼンベルグが提唱した物であるが、
当初彼が議論したのは位置 &math(x); を測定する際の測定誤差 &math(\epsilon_x); と、
その位置の測定により運動量 &math(p); が受ける撹乱 &math(\eta_p); の積 &math(\epsilon_x\eta_p); 
に関ついてであり、ハイゼンベルグの思考実験においては &math(\epsilon_x\eta_p\ge\hbar/2); 
が得られた。

1. で見た量子ゆらぎに関する不確定性  &math(\sigma_x\cdot\sigma_{p_x}\ge\hbar/2); と、~
3. で見た測定の及ぼす撹乱に関する不確定性 &math(\epsilon_x\eta_p\ge\hbar/2); とは長い間混同されてきたが、~
特に後者については測定のしかたによっては正しくなく、
上記の不等式を下回る実験が可能であることが近年報告されている。
((http://dx.doi.org/10.1103/PhysRevA.67.042105))

* 最小波束 [#y416874e]

2つの不等号で等号が成り立つ条件は、

+ シュバルツの不等式で2つのベクトルが平行であること~
すなわち &math(\gamma); を定数として &math(\alpha\psi=\gamma\beta\psi);
+ &math(\int \psi^*(\alpha\beta+\beta\alpha)\psi\,dx=0);

1. より、

 &math(
(x-<x>)\psi=\gamma(\frac{\hbar}{i}\frac{\PD}{\PD x}-<p>)\psi
);

 &math(
\frac{\PD\psi}{\PD x}=\frac{i}{\hbar}\left(\frac{x-<x>}{\gamma}+<p>\right)\psi
);

 &math(
\psi(x,t)=\psi_0e^{\frac{i}{\hbar}\left(\frac{(x-<x>)^2}{2\gamma}+<p>x\right]}
);

また、1. の式を 2. に代入すれば、

&math(
0&=\int \psi^*\frac{\alpha^2}{\gamma}\psi\,dx+\int (\beta\psi)^*\alpha\psi\,dx\\
&=\int \psi^*\frac{\alpha^2}{\gamma}\psi\,dx+\int (\frac{\alpha}{\gamma}\psi)^*\alpha\psi\,dx\\
&=\left(\frac{1}{\gamma}+\frac{1}{\gamma^*}\right)\int \alpha^2|\psi|^2\,dx\\
);

&math(\int \alpha^2|\psi|^2\,dx>0); より、&math(1/\gamma+1/\gamma^*=0); 
すなわち &math(\gamma+\gamma^*=0); となり、&math(\gamma); は純虚数でなければならない。

&math(x); の絶対値が大きいところで &math(\psi); が有限となるためには
&math(\gamma); は負の虚数でなければならない。
実際、&math(\gamma=-2i\sigma_x^2/\hbar);、&math(\psi_0=1/\sqrt{2\pi\sigma_x^2}); とすることにより

 &math(
\psi(x,t)=\frac{1}{\sqrt{2\pi\sigma_x^2}}\exp\left[\frac{(x-\langle x\rangle)^2}{4\sigma_x^2}+\frac{i\langle p\rangle}{\hbar}x\right]
);

が得られ、この式は &math(\sigma_x^2 = \langle \alpha^2\rangle); を満足する、
規格化された波動関数を与える。

* 要検討 [#n66e6b52]

http://www.phys.asa.hokkyodai.ac.jp/osamu/lectures/qm/node31.html

のような技巧的な証明の方が簡単か?

* 観測の不確定性 [#x4da8807]

Counter: 83258 (from 2010/06/03), today: 23, yesterday: 0