固有値問題・固有空間・スペクトル分解 のバックアップ差分(No.3)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[前の単元 <<<>線形代数Ⅱ/射影・直和・直交直和]]
               [[線形代数Ⅱ]]
               [[>>> 次の単元>線形代数Ⅱ/固有関数・固有空間・スペクトル分解]]

#contents
#mathjax

* $n$次正方行列$A$ [#z1f21735]
* $n$ 次正方行列 $A$ の固有値問題 [#z1f21735]

1年生でしっかりやったはずなので、ここでは簡単におさらい。

** 固有値問題 [#se45d460]

&math(A\bm x=\lambda\bm x);  ただし &math(\bm x\ne\bm 0);   (&math(\lambda);:固有値、&math(\bm x);:固有ベクトル)

&math((A-\lambda E)\bm x=\bm 0);

もし &math((A-\lambda E)); が正則なら &math(\bm x=(A-\lambda E)^{-1}\bm 0=\bm 0); となってしまってダメなので、

&math(|A-\lambda E|=0);  

これは &math(\lambda); の &math(n); 次方程式(固有方程式と呼ぶ)
となるので、重複度を含めて &math(n); 個の &math(\lambda); が求まる
これは &math(\lambda); に関する &math(n); 次方程式(&math(A); の固有方程式と呼ぶ)
となるので、これを複素数の範囲で解けば、重複度を含めて &math(n); 個の &math(\lambda); 
が求まる(代数学の基本定理)

それぞれの &math(\lambda); について、
求まったそれぞれの &math(\lambda); について、

&math((A-\lambda E)\bm x=\bm 0); に代入して &math(\bm x); について解くことで、
&math((A-\lambda E)\bm x=\bm 0); を &math(\bm x); について解くことで、

1コ以上、重複度コ以下の一次独立な固有ベクトル &math(\bm x); が求まる。
1コ以上、重複度コ以下の一次独立な固有ベクトルの線形結合の形で &math(\bm x); が求まる

*** 練習 [#jce2f76d]

&math(
A=\begin{pmatrix}
\cos\theta&-\sin\theta\\
\sin\theta&\cos\theta\\
\end{pmatrix}
); について固有値問題を解け。ただし &math(\theta!=2m\pi);

&math(A); は回転を表わす行列。一方で、固有値問題は &math(A\bm x=\lambda\bm x); で、&math(A); を掛けても向きの変わらないベクトルを探す問題だから、解無しになるのでは? と思うのが正しい感覚。
&math(A); は回転を表わす行列。一方で、固有値問題は &math(A\bm x=\lambda\bm x); だから、&math(A); を掛けても向きの変わらないベクトルを探す問題。すなわち・・・解無しになるのでは? と思うのが正しい感覚。

実際、実数の範囲では固有値は存在しない。ただし、複素数の範囲ではどんな行列にも必ず重複度を含めて &math(n); コの固有値が存在し、それぞれの固有値に対して最低1コの固有ベクトルが見付かる。回転を表わす上記の &math(A); に対しても、複素数の範囲ならばちゃんと固有値・固有ベクトルが見付かるはずである。
実際、実数の範囲では固有値は存在しない。一方、複素数の範囲ではどんな行列にも必ず重複度を含めて &math(n); コの固有値が存在し、それぞれの固有値に対して最低1コの固有ベクトルが見付かる。

回転を表わす上記の &math(A); に対しても、複素数の範囲ならばちゃんと固有値・固有ベクトルが見付かることを確認せよ。

** 対角化 [#sb4cc10b]

すべての固有値に対してちょうど重複度コの一次独立な固有ベクトルが求まる場合には、
それらをすべて集めると &math(n); コの一次独立な固有ベクトルが見つかる。
すべての固有値に対して、ちょうど重複度コの一次独立な固有ベクトルが求まる場合には
(必ずしも見付からない)、それらをすべて集めると &math(n); コの一次独立な固有ベクトルが見つかる。

&math(A\bm x_1=\lambda_1\bm x_1);

&math(A\bm x_2=\lambda_2\bm x_2);

&math(\phantom{A\bm x_2}\vdots);

&math(A\bm x_n=\lambda_n\bm x_n);

これらをまとめて書くと、

&math(
A\underbrace{\Big(\bm x_1\ \bm x_2\ \dots\ \bm x_n\Big)}_P
&=\Big(\lambda_1\bm x_1\ \lambda_2\bm x_2\ \dots\ \lambda_n\bm x_n\Big)\\
&=\underbrace{\Big(\bm x_1\ \bm x_2\ \dots\ \bm x_n\Big)}_P
\underbrace{\begin{pmatrix}
\lambda_1\\
&\lambda_2\\
&&\ddots\\
&&&\lambda_n
\end{pmatrix}}_\Lambda
);

&math(AP=P\Lambda);

&math(P); の列ベクトルが一次独立であることから &math(P); は正則で、
&math(P); の列ベクトルが一次独立であることから &math(P); は正則なので、
左から &math(P^{-1}); を掛ければ、

&math(P^{-1}AP=\Lambda);

として、正則行列 &math(P); により &math(A); を対角化可能。

** 対称行列の場合 [#t45d8b4a]

- 固有値 &math(\lambda); はすべて実数 &math(\lambda_k\in\mathbb R);
- 直交行列 &math({}^t\!R=R^{-1}); により対角化可能 &math(R^{-1}AR={}^T\!RAR=\Lambda);

1年生の時に証明した。

* 一般の線形変換の固有値問題 [#t50eddc9]
* 線形変換の固有値問題 [#t50eddc9]

&math(T:V\to V);
線形変換 &math(T:V\to V); に対して、

  &math(T\bm x=\lambda\bm x);  ただし &math(\bm x\ne\bm 0);   (&math(\lambda);:固有値、&math(\bm x);:固有ベクトル)
  &math(T\bm x=\lambda\bm x);  ただし &math(\bm x\ne\bm 0);

ある基底 &math(B); に対する表現は
を満たすスカラー &math(\lambda); を固有値、ベクトル &math(\bm x); を固有ベクトルと呼ぶ。

この方程式の、ある基底 &math(B); に対する表現は

  &math(T_B\bm x_B=\lambda\bm x_B);  ただし &math(\bm x_B\ne\bm 0);

であるから、行列 &math(T_B); の固有値問題を解けば &math(T); の固有値問題が解ける。
となるから、行列 &math(T_B); の固有値問題を解けば &math(T); の固有値問題が解ける。

特に、
  &math((Tの固有値)&=(T_Bの固有値)\\&= (T_{B'}の固有値));

  &math((Tの固有値)&=(T_Bの固有値)\\&= (T_B'の固有値));
ただし基底 &math(B'); は別の基底であり、固有値は基底の取り方に依存しない。

ただし基底 &math(B'); は別の基底。
  基底 &math(B); から基底 &math(B'); への基底の変換行列を &math(P_{B\to B'}); とすると、

基底 &math(B); から基底 &math(B'); への基底の変換行列を &math(P_{B\to B'}); とすると、
    &math(T_{B'}=P_{B\to B'}^{-1}T_BP_{B\to B'});

  &math(T_{B'}=P_{B\to B'}^{-1}T_BP_{B\to B'});
  であり、異なる基底に対する &math(T); の表現 &math(T_B,T_{B'}); は~
  互いに相似の関係にある。固有値が等しいのは当然!

であり、異なる基底に対する &math(T); の表現 &math(T_B,T_{B'}); は
互いに相似の関係にあるから、固有値が等しいのは当然
一方、固有ベクトル &math(\bm x); に対する「表現」 &math(\bm x_B,\bm x_B'); は、
基底の取り方に依存する

一方、固有ベクトル &math(\bm x); に対する表現 &math(\bm x_B,\bm x_B'); は
当然基底の取り方に依存するが、その場合も &math(\bm x); 自体は基底の取り方に寄らず決まる。

*** 練習 [#gadd49ab]

&math(x); の2次以下の多項式からなる線形空間 &math(P^2[x]); で定義された線形変換

  &math(T:f(x)\mapsto f(x+1)); 

の固有値、固有ベクトルを求めよ。

  &math(
T(ax^2+bx+c)
&=a(x+1)^2+b(x+1)+c\\
&=ax^2+(2a+b)x+(a+b+c)
);

基底を &math(B=\langle x^2,x,1\rangle); と取れば、

  &math(
T_B=\begin{pmatrix}
1&0&0\\
2&1&0\\
1&1&1\\
\end{pmatrix}
);

であるから、

  &math(
|T_B-\lambda E|=
\begin{vmatrix}
1-\lambda&0&0\\
2&1-\lambda&0\\
1&1&1-\lambda\\
\end{vmatrix}=(1-\lambda)^3=0
);

&math(\therefore \lambda=1);

  &math(
(T_B-E)\bm x=\begin{pmatrix}
0&0&0\\
2&0&0\\
1&1&0\\
\end{pmatrix}\begin{pmatrix}
a\\b\\c
\end{pmatrix}=\bm 0
);

  &math(a=b=0); 

  &math(c=s); と置けば、

  &math(
\begin{pmatrix}
a\\b\\c
\end{pmatrix}=
s
\begin{pmatrix}
0\\0\\1
\end{pmatrix}
);

&math(
\bm x_B=\begin{pmatrix}
0\\0\\1
\end{pmatrix}
); に対応するベクトルは &math(\bm x=0x^2+0x+1=1);


すなわち、固有値 &math(\lambda=1);、固有ベクトル &math(1); が答えになる。

* 固有空間 [#s319d545]

ある固有値 &math(\lambda); に属する固有ベクトルは部分空間 
&math(V(\lambda)=\set{\bm x|A\bm x=\lambda\bm x}); を作る。

>&math(\because A\bm x=\lambda\bm x,A\bm x=\lambda\bm x); ならば &math(A(a\bm x+b\bm y)=\lambda(a\bm x+b\bm y)); より、&math(V(\lambda)); はベクトルの和とスカラー倍に対して閉じている。

この部分空間 &math(V(\lambda)); を &math(A); の &math(\lambda); に属する固有空間と呼ぶ。

固有値 &math(\lambda); に属する一次独立な固有ベクトルが &math(r); コあって
&math(\bm x_1,\bm x_2,\dots,\bm x_r); であるならば、&math(V(\lambda)); は
これらのベクトルにより張られる空間に他ならない。

&math(V(\lambda)=[\bm x_1,\bm x_2,\dots,\bm x_r]=\set{\bm x|\bm x=\sum_{k=1}^rc_k\bm x_k});

* 対角化可能な場合 [#ua2eb55a]



* 特殊な行列の固有値 [#z59881ce]

** エルミート変換・エルミート行列 [#b253f18d]

エルミート変換:&math((T\bm x,\bm y)=(\bm x,T\bm y));~
エルミート行列:&math(T_B^\dagger=T_B);  ただし &math(B); は正規直交基底

エルミート変換の正規直交基底に対する表現行列はエルミート行列になる

これらの固有値は実数になる。

∵&math(
&(\bm x,T\bm x)=         \lambda(\bm x,\bm x)=         \lambda|\bm x|^2=\\
&(T\bm x,\bm x)=\overline\lambda(\bm x,\bm x)=\overline\lambda|\bm x|^2\\
);

&math((\lambda-\overline\lambda)|\bm x|^2=0);

&math(\lambda=\overline\lambda);

&math(\lambda\in\mathbb R);

注:エルミート行列は実行列では対称行列に対応する

** ユニタリ変換・ユニタリ行列 [#g90f3615]

ユニタリ変換:&math((T\bm x,T\bm y)=(\bm x,\bm y));   内積を保存する変換のこと~
ユニタリ行列:&math(T_B^\dagger=T_B^{-1});  ただし &math(B); は正規直交基底

ユニタリ変換の正規直交基底に対する表現行列はユニタリ行列になる

これらの固有値の絶対値は1になる。

∵&math(
&(T\bm x,T\bm x)=\lambda\overline\lambda(\bm x,\bm x)=|\lambda|^2|\bm x|^2=\\
&(\bm x,\bm x)=|\bm x|^2\\
);

&math((|\lambda|^2-1)|\bm x|^2=0);

&math(|\lambda|=1);

注:ユニタリ行列は実行列では直交行列に対応する

*** 例 [#m4cc8fd3]

&math(
A=\begin{pmatrix}
\cos\theta&-\sin\theta\\
\sin\theta&\cos\theta\\
\end{pmatrix}
); はユニタリ行列。

** 正規行列 $A^\dagger A=AA^\dagger$ はユニタリ行列で対角化可能 [#gbc1ad24]

正規行列であること &math(A^\dagger A=AA^\dagger); と

ユニタリ行列 &math(U^\dagger=U^{-1}); で対角化可能 &math(U^{-1}AU=U^\dagger AU=\Lambda); は同値である。

詳しい証明は [[線形代数Ⅱ/正規行列の対角化可能性]] を参照のこと。



~

[[前の単元 <<<>線形代数Ⅱ/射影・直和・直交直和]]
               [[線形代数Ⅱ]]
               [[>>> 次の単元>線形代数Ⅱ/固有関数・固有空間・スペクトル分解]]

* 質問・コメント [#d834c5f8]

#article_kcaptcha


Counter: 143397 (from 2010/06/03), today: 9, yesterday: 0