球対称井戸型ポテンシャル のバックアップ差分(No.13)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[前の単元 <<<>量子力学Ⅰ/水素原子]]
             [[量子力学Ⅰ]]             
[[>>> 次の単元>量子力学Ⅰ/3次元調和振動子]]~

* 目次 [#gad10ece]

#contents

* 球形の箱の中の粒子 [#h9e0cd19]

3D の箱型ポテンシャル中の粒子について考える。

 &math(
V(r)=\begin{cases}
0&(r<=a)\\
V_0&(r>a)\\
\end{cases}
);

この場合には、&math(\chi(r)=rR(r)); を考えるよりも &math(R(r)); をそのまま扱った方が都合がよい。

 &math(\rho=\sqrt{\frac{2m\varepsilon}{\hbar^2}}r);

と置くことにより、箱の内部の方程式は

 &math(
\frac{d^2R}{d\rho^2}+\frac{2}{\rho}\frac{dR}{d\rho}+\left\{1-\frac{l(l+1)}{\rho^2}\right\}R=0
);

となる。
となる。&math(r\to\infty); での極限形は、

この解は''球ベッセル関数'' &math(j_l(\rho)); と呼ばれる。
 &math(
\frac{d^2R}{d\rho^2}+\frac{2}{\rho}\frac{dR}{d\rho}+R=0
);

を満たすはずで、

 &math(
\Big(\frac{\sin\rho}\rho\Big)'
=-\frac{\sin\rho}{\rho^2}+\frac{\cos\rho}\rho
);

 &math(
\begin{aligned}
\Big(\frac{\sin\rho}\rho\Big)^{\prime\prime}
&=\frac{2\sin\rho}{\rho^3}-\frac{2\cos\rho}{\rho^2}-\frac{\sin\rho}\rho\\
&=\frac2\rho\Big(\frac{\sin\rho}\rho\Big)'-\frac{\sin\rho}\rho
\end{aligned}
);

を参考にすると、&math(R\to A\frac{\sin\rho}\rho+B\frac{\cos\rho}\rho); 
となればよいことが分かる。
実際この形は &math(l=0); の解になっている。

そこで &math(l\ne 0); では、

 &math(\Big(\frac1{\rho}\ \text{の多項式}\Big)\frac{\cos\rho}{\rho}+\Big(\frac1{\rho}\ \text{の多項式}\Big)\frac{\sin\rho}{\rho});

の形の解が存在することが予想される。

特にこのうち原点で発散しない解は''球ベッセル関数'' &math(j_l(\rho)); と呼ばれる(発散するものは''球ノイマン関数''と呼ばれる)。

 &math(j_l(\rho)=(-\rho)^l\left(\frac{1}{\rho}\frac{d}{d\rho}\right)^l\frac{\sin\rho}{\rho});

 &math(j_0(\rho)=\frac{\sin\rho}{\rho});

 &math(j_1(\rho)=\frac{\sin\rho}{\rho^2}-\frac{\cos\rho}{\rho});
 &math(j_1(\rho)=\frac1\rho \frac{\sin\rho}{\rho}-\frac{\cos\rho}{\rho});

 &math(j_2(\rho)=\left(\frac{3}{\rho^3}-\frac{1}{\rho}\right)\sin\rho-\frac{3}{\rho^2}\cos\rho);
 &math(j_2(\rho)=\left(\frac{3}{\rho^2}-1\right)\frac{\sin\rho}\rho-\frac{3}{\rho}\frac{\cos\rho}\rho);

 &math(j_3(\rho)=\left(-\frac{6}{\rho^2}+\frac{15}{\rho^4}\right) \sin\rho+\left(\frac{1}{\rho}-\frac{15}{\rho^3}\right) \cos\rho);
 &math(j_3(\rho)=\left(-\frac{6}{\rho}+\frac{15}{\rho^3}\right) \frac{\sin\rho}\rho+\left(1-\frac{15}{\rho^2}\right)\frac{\cos\rho}\rho);

 ...

[[詳しい導出はこちら>@量子力学Ⅰ/球対称井戸型ポテンシャル/メモ#q4e20ed3]]

** 特徴 [#mf1aed18]

- 原点で発散することはない
-- &math(j_0(\rho)=1);
-- &math(l\ge 1); では &math(j_l(\rho)=0);
- &math(j_l(\rho)); は &math(\rho); の大きいところで、
-- &math(l=4k+0); なら &math(\big(\sin\rho\big)/\rho);
-- &math(l=4k+1); なら &math(-\big(\cos\rho\big)/\rho);
-- &math(l=4k+2); なら &math(-\big(\sin\rho\big)/\rho);
-- &math(l=4k+3); なら &math(\big(\cos\rho\big)/\rho);
&math(|\rho j_l(\rho)|^2); をプロットした。

&attachref(SphericalBesselJ2.png,,66%);

- &math(|\rho j_l(\rho)|^2); は &math(\rho); の大きいところで、
-- &math(l=2k+0); なら &math(\sin^2\rho);
-- &math(l=2k+1); なら &math(\cos^2\rho);
- &math(\rho); の小さいところでは、&math(l); が大きいほどゆっくり振動する
-- &math(j_{l+4}); は &math(j_l); に比べて振動回数が1回少ない
- &math(\sin); や &math(\cos); の周期性を反映して &math(j_l(\rho)=0); を満たす根を無限個持つ
- &math(\sin); の項と &math(\cos); の項がうまく打消し合い、原点で発散しないようになっている
-- &math(j_0(\rho)=1);
-- &math(l\ge 1); では &math(j_l(\rho)=0);
-- 任意の &math(l\ge 0); に対して &math(\rho j_l(\rho)=0);
-- 実際、テーラー展開してみると原点付近で &math(\rho j_l(\rho)\propto\rho^{l+1}); になっている。
- &math(\rho); の小さいところでは &math(l); が大きいほどゆっくり振動する
-- &math(|\rho j_{l+2}|^2); は &math(|\rho j_l|^2); に比べて振動回数が1回少なくなる

&attachref(SphericalBesselJ.png,,66%,ogp);
** 境界条件 [#g9f280dc]

&math(l); を3つ飛ばしでプロットすると:~
&attachref(SphericalBesselJ1.png,,66%);
今まで学んできたとおり、微分方程式の一般解に境界条件を要求することでエネルギーが量子化するのであった。
この問題における境界条件は 

&math(j_l(\rho)); ではなく &math(|\rho j_l(\rho)|^2); をプロットすれば下図のようになる。
&math(\rho); の大きいところでは &math((1\pm\cos 2\rho)/2); に漸近する。
&math(l); が増える毎に &math(\rho\sim 0); 付近の振動回数が減ってゆく。
- &math(r=0); で発散しない
- &math(r=a); でゼロとなる

&attachref(SphericalBesselJ2.png,,66%);
である。

** 境界条件 [#g9f280dc]
上記微分方程式の一般解は球ベッセル関数 &math(j_l(\rho)); と球ノイマン関数 &math(n_l(\rho)); の和で表されるが、

&math(V_0=+\infty); の場合には、
1次元の箱形ポテンシャルのところで学んだのと同様に、
&math(r=a); において &math(j_l(\rho(r))=0); が要求されるから、
 &math(R(r)=Aj_l(\rho)+Bn_l(\rho));

&math(B=0); と置いたことにより、すでに原点での境界条件は満たしている。

次に &math(r=a); でゼロになることを要求するのであるが、
上記の「箱の内部の方程式」には見た目上エネルギー固有値が現れず、動かせるパラメータがないように見える。よく見てみると、
&math(r); と &math(\rho); との変換式にエネルギーが押し込められてしまっているのだ。

そこで &math(r); と &math(\rho); との比を変えることで境界条件を満たすことを考えると、

 &math(j_l\Big(\sqrt{\frac{2m\varepsilon}{\hbar^2}}a\Big)=0);

により &math(\varepsilon); が決定される。
により &math(\varepsilon); が決定されることになる。

&math(j_l(\rho)); の根は無数にあるが、&math(n); 番目の根を &math(\rho_n{}^l); とすれば、
このときグラフは次のようになる。
見やすいように最大値で規格化した。横軸は &math(r/a); である。

&math(\varphi(r));~
&attachref(SphericalBesselJScaled.png);

&math(|\varphi(r)|^2);~
&attachref(SphericalBesselJScaled2.png);

&math(|r\varphi(r)|^2);~
&attachref(SphericalBesselJScaled3.png);

&math(rR(r)); と一次元井戸型ポテンシャルの解との類似性に注意せよ。
- &math(l=0); については一次元井戸型ポテンシャルの解と完全に一致する
- &math(l>0); については原点付近の存在確率が下がるが、原点から遠いところではやはり一次元の解と近くなる

** エネルギー固有値 [#h0cab4d2]

&math(n); 番目の根を &math(\rho_n{}^l); とすれば、

 &math(\sqrt{\frac{2m\varepsilon}{\hbar^2}}a=\rho_n{}^l);

より、

 &math(\varepsilon_n{}^l=\frac{\hbar^2}{2m}\left(\frac{\rho_n{}^l}{a}\right)^2);

として、エネルギーの大きさは根の位置 &math(\rho_n{}^l); で決まる。
として、エネルギーの大きさは根の位置の2乗に比例する &math(\varepsilon_n{}^l\propto\big(\rho_n{}^l\big)^2);。

実際に値を入れてみると、

 &math(\varepsilon_1{}^0<\varepsilon_1{}^1<\varepsilon_1{}^2<\varepsilon_2{}^0<\varepsilon_1{}^3<\varepsilon_2{}^1<\dots);

となる。

&math(n); と &math(l); との大小関係に制約はないから、任意の &math(n\ge 0); に対して
任意の &math(l\ge 0); が対応する。

ここでの &math(n); は [[量子力学Ⅰ/水素原子#z46f54fd]] における &math(n'); に相当するから、
&math(l+n); が水素原子の時の &math(n); と同等である。

#ref(spherical-box-energies.svg,right,around,400x271);

|&math(l);|&math(n);|&math(l+n);|対応|&math((\rho_n{}^l)^2);|
|0|1| 1|1s|9.86959|
|1|1| 2|2p|20.1907|
|2|1| 3|3d|33.2175|
|0|2| 2|2s|39.4785|
|3|1| 4|4f|48.8312|
|1|2| 3|3p|59.6795|
|4|1| 5|5g|66.9543|
|2|2| 4|4d|82.7192|
|0|3| 3|3s|88.8265|
|3|2| 4|4f|108.516|
|1|3| 4|4p|118.9|

エネルギー準位をグラフ化するため、横軸に &math(l); を、
縦軸に &math((\rho_n{}^l)^2); を取り、&math(n=1,2,3,\dots); に対応する値をプロットした。

&math(n); に比べて &math(l); に対するエネルギーの増加が少ないことが分かる。

クーロンポテンシャルでは角運動量が増加して軌道が外に寄ると、
その分、ポテンシャルエネルギーも増えたが、
箱型ポテンシャルではポテンシャルが一定であるために角運動量の増加は純粋な運動エネルギーの増加としてしか寄与しない。これがクーロンポテンシャルに比べて &math(l); に対するエネルギー増加が小さい原因となっている。

** グラフ [#v1333fc5]

見やすいように最大値で規格化した。

&math(\varphi(r));~
&attachref(SphericalBesselJScaled.png);

&math(|\varphi(r)|^2);~
&attachref(SphericalBesselJScaled2.png);

&math(|r\varphi(r)|^2);~
&attachref(SphericalBesselJScaled3.png);

&math(r\varphi(r)); と一次元井戸型ポテンシャルの解との類似性に注意せよ。
- &math(l=0); については一次元井戸型ポテンシャルの解と完全に一致する
- &math(l>0); については原点付近の存在確率が下がるが、原点から遠いところではやはり一次元の解と近くなる

** 箱の外のポテンシャルが有限の場合 [#s9bc8294]

箱の外のポテンシャルが有限の場合にも、&math(r=a); における位相が少しずれるものの、
外部の解(第1種球ハンケル関数となる)となめらかに接続する条件から &math(\varepsilon); が決定される。

閉じ込めが弱くなると、同じ &math(n,l); に対するエネルギーは低下する。
このときポテンシャルエネルギーの期待値はむしろ増加するから、
エネルギーの低下は運動エネルギーの低下によるものである。

~
[[前の単元 <<<>量子力学Ⅰ/水素原子]]
             [[量子力学Ⅰ]]             
[[>>> 次の単元>量子力学Ⅰ/3次元調和振動子]]~

* 質問・コメント [#z49eb7a9]

#article_kcaptcha


Counter: 20840 (from 2010/06/03), today: 2, yesterday: 0