球座標を用いた変数分離 のバックアップ(No.2)

更新


量子力学Ⅰ

極座標

&math( \begin{cases} x=r\sin\theta\cos\phi\\ y=r\sin\theta\sin\phi\\ z=r\cos\theta \end{cases} );

微分の変換

  df=\frac{\PD f}{\PD r}dr+\frac{\PD f}{\PD \theta}d\theta+\frac{\PD f}{\PD \phi}d\phi

に、 dr=\frac{\PD r}{\PD x}dx,\ d\theta=\frac{\PD \theta}{\PD x}dx,\ d\phi=\frac{\PD \phi}{\PD x}dx を代入すれば、

  df=\frac{\PD f}{\PD r}\frac{\PD r}{\PD x}dx+\frac{\PD f}{\PD \theta}\frac{\PD \theta}{\PD x}dx+\frac{\PD f}{\PD \phi}\frac{\PD \phi}{\PD x}dx

変形して、

  \frac{\PD }{\PD x}f=\Big(\frac{\PD r}{\PD x}\frac{\PD}{\PD r}+\frac{\PD \theta}{\PD x}\frac{\PD}{\PD \theta}+\frac{\PD \phi}{\PD x}\frac{\PD}{\PD \phi}\Big)f

したがって、

 &math(\frac{\PD }{\PD x}=\frac{\PD r}{\PD x}\frac{\PD}{\PD r}+\frac{\PD \theta}{\PD x}\frac{\PD}{\PD \theta}+\frac{\PD \phi}{\PD x}\frac{\PD}{\PD \phi}\\ );

同様にして、

 &math( \begin{cases} \displaystyle\frac{\PD }{\PD x}=\frac{\PD r}{\PD x}\frac{\PD}{\PD r}+\frac{\PD \theta}{\PD x}\frac{\PD}{\PD \theta}+\frac{\PD \phi}{\PD x}\frac{\PD}{\PD \phi}\\[4mm] \displaystyle\frac{\PD }{\PD y}=\frac{\PD r}{\PD x}\frac{\PD}{\PD r}+\frac{\PD \theta}{\PD x}\frac{\PD}{\PD \theta}+\frac{\PD \phi}{\PD x}\frac{\PD}{\PD \phi}\\[4mm] \displaystyle\frac{\PD }{\PD z}=\frac{\PD r}{\PD x}\frac{\PD}{\PD r}+\frac{\PD \theta}{\PD x}\frac{\PD}{\PD \theta}+\frac{\PD \phi}{\PD x}\frac{\PD}{\PD \phi}\\ \end{cases} );

のように変換される。

具体的に計算する

全微分の時と異なり、 \frac{\PD r}{\PD x}\ne\Big(\frac{\PD x}{\PD r}\Big)^{-1} であることに注意せよ。

r^2=x^2+y^2+z^2 より、 2r\frac{\PD r}{\PD x}=2x などが得られて、

 &math( \begin{cases} \displaystyle\frac{\PD r}{\PD x}=\frac{x}{r}=\sin\theta\cos\phi\\[4mm] \displaystyle\frac{\PD r}{\PD y}=\frac{y}{r}=\sin\theta\sin\phi\\[4mm] \displaystyle\frac{\PD r}{\PD z}=\frac{z}{r}=\cos\theta\\ \end{cases} );

\tan^2\theta=\frac{x^2+y^2}{z^2} より、 \frac{1}{\cos^2\theta}\frac{\PD \theta}{\PD y}=\frac{2x}{z^2}

\frac{\not\!2\tan\theta}{\cos^2\theta}\frac{\PD \theta}{\PD x}=\frac{\not\! 2x}{z^2} \frac{\not\!2\tan\theta}{\cos^2\theta}\frac{\PD \theta}{\PD y}=\frac{\not\! 2y}{z^2} \frac{\not\!2\tan\theta}{\cos^2\theta}\frac{\PD \theta}{\PD z}=-\not\!2\frac{x^2+y^2}{z^3}

 &math( \begin{cases} \displaystyle\frac{\PD \theta}{\PD x}=\frac{r\sin\theta\cos\phi}{r^2\cos^2\theta}\frac{\cos^2\theta}{\tan\theta}=\frac{1}{r}\cos\theta\cos\phi\\[4mm] \displaystyle\frac{\PD \theta}{\PD y}=\frac{r\sin\theta\sin\phi}{r^2\cos^2\theta}\frac{\cos^2\theta}{\tan\theta}=\frac{1}{r}\cos\theta\sin\phi\\[4mm] \displaystyle\frac{\PD \theta}{\PD z}=-\frac{r^2\sin^2\theta}{r^3\cos^3\theta}\frac{\cos^2\theta}{\tan\theta}=-\frac{1}{r}\sin\theta \end{cases} );

\tan\phi=\frac{y}{x} より、

\frac{1}{\cos^2\phi}\frac{\PD\phi}{\PD x}=-\frac{y}{x^2} \frac{1}{\cos^2\phi}\frac{\PD\phi}{\PD y}=\frac{1}{x} \frac{1}{\cos^2\phi}\frac{\PD\phi}{\PD z}=0 であるから、

 &math( \begin{cases} \displaystyle\frac{\PD \phi}{\PD x}=-\frac{r\sin\theta\sin\phi}{r^2\sin^2\theta\cos^2\phi}\cos^2\phi=-\frac{\sin\phi}{r\sin\theta}\\[4mm] \displaystyle\frac{\PD \phi}{\PD y}=\frac{1}{r\sin\theta\cos\phi}\cos^2\phi=\frac{\cos\phi}{r\sin\theta}\\[4mm] \displaystyle\frac{\PD \phi}{\PD z}=0 \end{cases} );

これらを代入して、

 &math( \begin{cases}

\displaystyle\frac{\PD}{\PD x}= \sin\theta\cos\phi \frac{\PD}{\PD r}

  1. \frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta}
  • \frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\\[4mm]

\displaystyle\frac{\PD}{\PD y}= \sin\theta\sin\phi \frac{\PD}{\PD r}

  1. \frac{1}{r}\cos\theta\sin\phi \frac{\PD}{\PD \theta}
  2. \frac{\cos\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\\[4mm]

\displaystyle \frac{\PD}{\PD z}= \cos\theta \frac{\PD}{\PD r}

  • \frac{1}{r}\sin\theta \frac{\PD}{\PD \theta}\\[4mm]

\end{cases} );

球座標表示のラプラシアン

\triangle=\nabla^2=\frac{\PD^2}{\PD x^2}+\frac{\PD^2}{\PD y^2}+\frac{\PD^2}{\PD z^2}

に上記を代入するだけ! ・・・ 実際やってみるとえらい大変。→ 計算の詳細

結果だけまとめると、

\nabla^2=\frac{\PD^2}{\PD r^2}+\frac{2}{r} \frac{\PD}{\PD r}+\frac{1}{r^2}\Lambda

ただし、

&math(\Lambda=\frac{1}{\sin\theta} \frac{\PD}{\PD \theta} \Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{1}{\sin^2\theta} \frac{\PD^2}{\PD \phi^2});

極座標で表わしたシュレーディンガー方程式

球関数 $Y^m_l(\theta,\phi)$:角運動量の固有関数

動径方向の固有関数

球形の箱形ポテンシャル

3次元調和振動子

水素原子(静電ポテンシャル)


Counter: 34230 (from 2010/06/03), today: 2, yesterday: 0