球座標を用いた変数分離 のバックアップ差分(No.27)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[前の単元 <<<>量子力学Ⅰ/群速度と波束の崩壊]]
             [[量子力学Ⅰ]]             
[[>>> 次の単元>量子力学Ⅰ/角運動量の固有関数]]~

* 目次 [#ibe32ff7]

[[量子力学Ⅰ]]

#contents
&mathjax();

* 中心力場の中での運動 [#c3853c5e]

球対称なポテンシャル &math(V(\bm r)=V(r)); の中での運動を考える。

このとき、&math(x,y,z); の直交座標ではなく、
&math(r,\theta,\phi); を用いた球座標を用いると都合がよい。

* 球座標における微分演算子(まとめ) [#xcdb86c0]

#ref(spherical-coordinate2.svg,right,around);

[[導出方法はこちら>@量子力学Ⅰ/球座標における微分演算子]]

球座標:

 &math(
\begin{cases}
x=r\sin\theta\cos\phi\\
y=r\sin\theta\sin\phi\\
z=r\cos\theta
\end{cases}
);

ラプラシアン:

 &math(\nabla^2=\Delta=&\frac{\PD^2}{\PD x^2}+\frac{\PD^2}{\PD y^2}+\frac{\PD^2}{\PD z^2}\\
=&\frac{1}{r}\frac{\PD^2}{\PD r^2}r+\frac{1}{r^2}\hat\Lambda);

 &math(\hat\Lambda=\frac{1}{\sin\theta} \frac{\PD}{\PD \theta}
\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{1}{\sin^2\theta} \frac{\PD^2}{\PD \phi^2});

角運動量の大きさの2乗:

 &math(
\hat{\bm l}^2=|\bm r\times\hat{\bm p}|^2=-\hbar^2\hat\Lambda
);

ラプラシアンの &math(1/r^2); の項の係数は、
角運動量の大きさの2乗の演算子 &math(\hat l^2); と &math(-\hbar^2); の係数を除いて等しい。

&math(z); 軸まわりの運動量:

 &math(
\hat l_z=(\bm r\times\hat{\bm p})_z=-i\hbar\frac{\PD}{\PD\phi}
);

残りの角運動量:

 &math(
\hat l_x^2+\hat l_y^2=&\,\hat{\bm l}^2-\hat l_z^2\\
=&-\hbar^2\left[\frac{1}{\sin\theta} \frac{\PD}{\PD \theta}
\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{1}{\sin^2\theta} \frac{\PD^2}{\PD \phi^2}\right]+\hbar^2\frac{\PD^2}{\PD \phi^2}\\
=&-\hbar^2\left[\frac{1}{\sin\theta} \frac{\PD}{\PD \theta}
\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{1}{\tan^2\theta} \frac{\PD^2}{\PD \phi^2}\right]\\
);

角運動量の上昇・下降演算子(意味は後ほど):

 &math(\hat l_\pm=\hat l_x\pm i\hat l_y=\hbar e^{\pm i\phi}\Big(\pm\frac{\PD}{\PD\theta}+\frac{i}{\tan\theta}\frac{\PD}{\PD\phi}\Big));

* 演習:シュレーディンガー方程式の変数分離 [#mfb957f5]

球座標表示におけるラプラシアンは以下のように表される。

 &math(\nabla^2=\frac{\PD^2}{\PD r^2}+\frac{2}{r}\frac{\PD}{\PD r}+\frac{1}{r^2}\hat\Lambda);

 &math(\hat\Lambda=\frac{1}{\sin\theta} \frac{\PD}{\PD \theta}
\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{1}{\sin^2\theta} \frac{\PD^2}{\PD \phi^2});

以下の問いに従って、中心力場 &math(V(\bm r)=V(r)); の中での粒子の運動について考えよ。

(1) &math(\frac{1}{r}\frac{\PD^2}{\PD r^2}r=\frac{\PD^2}{\PD r^2}+\frac{2}{r}\frac{\PD}{\PD r}); を示せ。

(2) 与えられたラプラシアンの表式と (1) の結果を用いて、
球座標表示における時間を含まないシュレーディンガー方程式を書き下せ。
解答には &math(\hat\Lambda); を用いて良い。

(3) 波動関数を &math(\varphi(r,\theta,\phi)=R(r)Y(\theta,\phi)); と置き、
(2) の方程式を変数分離することにより、以下の方程式を導け。
ただし共通の定数を &math(l(l+1)); と置いた。

 &math(
&-\frac{\hbar^2}{2m}\frac{\PD^2}{\PD r^2}rR(r)+\left\{V(r)+\frac{\hbar^2l(l+1)}{2mr^2}\right\}rR(r)=\varepsilon\,rR(r)
);

 &math(
\hat\Lambda Y(\theta,\phi)=-l(l+1)Y(\theta,\phi)
);

(4) (3) の方程式を解いて得られる &math(Y(\theta,\phi)); および &math(\varphi); 
が角運動量の大きさの2乗 &math(\hat l^2); の固有関数であり、その固有値が &math(\hbar^2l(l+1)); 
となることを確かめよ。

(5) 古典論において、質量 &math(m); の粒子が原点から &math(r); の距離を角速度 &math(\omega); 
で回転するときの角運動量は &math(L=mr^2\omega); であり、遠心力は &math(f_c=mr\omega^2); 
で与えられる。~
ここから遠心力に対するポテンシャルエネルギーが &math(V_c(r)=\frac{L^2}{2mr^2});
と書けることを示し、(3) で得た &math(R(r)); の方程式に現れる &math(\frac{\hbar^2l(l+1)}{2mr^2}); 
の項が遠心力の寄与を表わすことを理解せよ。中心力場内では角運動量が保存量となるため、
遠心力とポテンシャルエネルギーとの関係は &math(L); 一定の元で &math(\frac{\PD V_c}{\PD r}=-f_c); 
であることに注意せよ。

(6) &math(Y(\theta,\phi)=\Theta(\theta)\Phi(\phi)); と置いて (3) の第2式を変数分離すると以下の式が得られることを確かめよ。

 &math(\left\{\sin\theta \frac{\PD}{\PD \theta}\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+
l(l+1)\sin^2\theta-m^2\right\}\Theta(\theta)=0);

 &math(\frac{\PD^2}{\PD \phi^2}\Phi(\phi)=-m^2\Phi(\phi));

ただし、共通の定数を &math(-m^2); と置いた(質量 &math(m); と紛らわしいが慣例に従った)。

(7) &math(\Phi); に対する方程式を解き、連続の条件 &math(\Phi(2\pi)=\Phi(0)); を満たすためには 
(7) &math(\Phi); に対する方程式は、&math(\Phi); が &math(\frac{\PD}{\PD \phi}\Phi(\phi)=im\Phi(\phi)); を満たせば自動的に満たされる。この方程式を解き、連続の条件 &math(\Phi(2\pi)=\Phi(0)); を満たすためには 
&math(m); が整数値を取らなければならないことを確かめよ。

(8) (6), (3) を解いて得られた &math(\Phi(\phi)); および &math(\varphi(r,\theta,\phi)); は
(8) (7), (3) を解いて得られた &math(\Phi(\phi)); および &math(\varphi(r,\theta,\phi)); は
&math(\hat l_z); の固有関数であり、その固有値が &math(\hbar m); であることを確かめよ。
((符号をどう取るかに任意性が残るため、少し曖昧な書き方になっている))

[[●解答はこちら>@量子力学Ⅰ/球座標を用いた変数分離/メモ#cabc7bba]]

** 解説 [#zf4c1722]

球対称ポテンシャル &math(V(\bm r)=V(r)); に対する時間を含まないシュレーディンガー方程式:

 &math(
\hat H\varphi(\bm r)=\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(r)\right]\varphi(\bm r)=\varepsilon \varphi(\bm r)
);

は球座標

 &math(
\begin{cases}
x=r\sin\theta\cos\phi\\
y=r\sin\theta\sin\phi\\
z=r\cos\theta
\end{cases}
);

を用いて &math(\varphi=R(r)Y(\theta,\phi)); のように変数分離できることを仮定すると、

 &math(
\hat {\bm l}^2 \,Y_l(\theta,\phi)=\hbar^2l(l+1)\,Y_l(\theta,\phi)
);

 &math(
\displaystyle\underbrace{\bigg[-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+\bigg\{V(r)+\overbrace{\frac{\hbar^2l(l+1)}{2mr^2}}^{遠心力ポテンシャル}\bigg\}\bigg]}_{\textstyle \hat H^l}\Big\{rR_n{}^l(r)\Big\}=\varepsilon_n{}^l\Big\{rR_n{}^l(r)\Big\}
);

を得る。

第2式は &math(Y(\theta,\phi)); が全角運動量の二乗 &math(\hat{\bm l}^2); 
の固有関数であることを示しているが、これは波動関数 &math(\varphi); 自体が 
&math(\hat{\bm l}^2); の固有関数ということと同義である。
(&math(\hat{\bm l}^2); は &math(R(r)); に作用しないことに注意せよ)

そこで上式は、全角運動量の二乗が &math(\hbar^2l(l+1)); と確定した波動関数に対しては、
&math(rR(r)); が遠心力に対するポテンシャル &math(\hbar^2l(l+1)/2mr^2); 
を含めた1次元ハミルトニアン &math(\hat H^l); に対するシュレーディンガー方程式の解となる
ことを示している。(遠心力が外向きに働くことに対応して、原点から遠ざかる向きにポテンシャルが減少することを確認せよ)

なぜ &math(R(r)); でなく &math(rR(r)); に対する方程式となるかについては後に見る

全角運動量を決める量子数 &math(l); (後にこれがゼロ以上の整数となることを見る)
が変わると &math(rR(r)); に対する方程式も変化する。
各 &math(l); に対して複数の固有値 &math(\varepsilon_n^l); と固有関数 &math(R_n^l(r)); 
が見つかるため、エネルギーは2つの量子数 &math(n, l); で指定される。

&math(Y); に対する方程式は &math(V(r)); を含まない。
すなわち中心力でさえあれば、具体的なポテンシャル形状を与えずに解ける。

&math(Y=\Theta(\theta)\Phi(\phi)); のように変数分離できることを仮定すると、

 &math(
\hat l_z^2\Phi(\phi)=-\hbar^2\frac{\PD^2}{\PD \phi^2}\Phi(\phi)=\hbar^2m^2\Phi(\phi)
);

 &math(
&\bigg\{\frac{\hbar^2}{\sin\theta} \frac{\PD}{\PD \theta}\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)
+\frac{\hbar^2 m^2}{\sin^2\theta}\bigg\}\Theta(\theta)=\\
&\bigg\{\underbrace{\frac{\hbar^2}{\sin\theta} \frac{\PD}{\PD \theta}\Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{\hbar^2m^2}{\tan^2\theta}\rule[-11pt]{0pt}{0pt}}_{\displaystyle l_x^2+l_y^2}+
\underbrace{\hbar^2 m^2\rule[-11pt]{0pt}{0pt}}_{\displaystyle l_z^2}\bigg\}\Theta(\theta)=\underbrace{\hbar^2l(l+1)\rule[-11pt]{0pt}{0pt}}_{\displaystyle l^2}\,\Theta(\theta)
);

を得る。

&math(\phi); は &math(z); 軸周りの回転を表すから、
&math(\Phi); には &math(\Phi(\phi+2\pi)=\Phi(\phi)); の周期性が要求される。
ここから、&math(m); が整数であることが必要となる(&math(m=\dots,-2,-1,0,1,2,\dots);)。
このとき、&math(\Phi(\phi)); は &math(\hat l_z); の固有値 &math(\hbar m); 
の固有関数となる。

&math(\hbar m); が &math(z); 軸周りの角運動量を表し、
&math(\hbar^2l(l+1)); が全角運動量の2乗を表すことを考えれば、
第2式の左辺で &math(\hbar^2 m^2); を除いた部分が &math(\hat l_x^2+\hat l_y^2); 
を表すことが分かる。

第2式は &math(l_z); が決定している状況で &math(l^2); の固有値を求める問題になっており、

 &math(l\ge |m|);

を満たす整数値 &math(l); に対してのみ解を持つことが知られている。

逆に、ある &math(l); に対しては &math(-l\le m \le l); となるため、

| 全角運動量 &math(l\sim\hbar l); | &math(z); 軸周り角運動量 &math(l_z=\hbar m); | 状態 |
| &math(l=0); | &math(m=0); | &math(s); 状態 |
| &math(l=1); | &math(m=-1,0,1); | &math(p); 状態 |
| &math(l=2); | &math(m=-2,-1,0,1,2); | &math(d); 状態 |
| &math(l=3); | &math(m=-3,-2,-1,0,1,2,3); | &math(f); 状態 |
| &math(\vdots); | &math(\vdots); | &math(\vdots); |

原子の軌道を表す場合には、量子数 &math(l); をそのまま用いる代わりに &math(s,p,d,f,g,\dots); のアルファベットを用いる方が一般的である。&math(l); とアルファベットの対応は以下の通り。原子の軌道を考える際には多くの場合 f 軌道までで十分である。現在知られている最も重い原子でも、基底状態では g, h などの電子軌道に電子が入ることはない。

|~ &math(l);   | 0  | 1 | 2 | 3 | 4 | 5 | … |
|~文字          | s | p | d | f | g | h | … |

上記を線形代数的な言葉でまとめるならば、

 &math(\hat{\bm l}^2Y_l{}^m(\theta, \phi)=\hbar^2l(l+1) Y_l{}^m(\theta, \phi));

なる固有値問題において、固有値 &math(\hbar^2l(l+1)); に対する 
&math(Y); の固有空間は &math(2l+1); 次元になる。
そして、この固有空間に角運動量の &math(z); 成分を表す演算子 &math(\hat l_z); に対する 
&math(2l+1); 個の独立な固有関数を取ったのが
&math(Y_l{}^m(\theta, \phi)=\Theta_l{}^m(\theta)\Phi_m(\phi)); である。

 &math(l_zY_l{}^m(\theta, \phi)=\hbar m Y_l{}^m(\theta, \phi));

ただし、

 &math(l=0,1,2,\dots); 

 &math(m=-l,-l+1,\dots,-1,0,1,\dots,l-1,l); 

この関数は 球面調和関数 と呼ばれ、具体的には次の形を取る。

 &math(
Y_l^m(\theta,\phi)=
\underbrace{(-1)^{(m+|m|)/2}\sqrt{\frac{2l+1}{2}\frac{(l-|m|)!}{(l+|m|)!}}P_l^{|m|}(\cos\theta)}_{\Theta(\theta)}
\underbrace{\frac{1}{\sqrt{2\pi}}e^{im\phi}}_{\Phi(\phi)}
);

結果的に3次元の固有関数は3つの量子数 &math(l,m,n); でラベル付けされ、

 &math(\varphi_{lmn}(r,\theta,\phi)=R_n^l(r)Y_l^m(\theta,\phi)=R_n^l(r)\Theta_l^m(\theta)\Phi_m(\phi));

 &math(\hat H\varphi_{lmn}(r,\theta,\phi)=\varepsilon_n{}^l\varphi_{lmn}(r,\theta,\phi));

すなわち、この系のエネルギー固有値は2つの量子数 &math(l,n); により指定される。

&math(n); を主量子数、&math(l); を方位量子数、&math(m); を磁気量子数、と呼ぶ。

&math(\varphi_{lmn}); に対して &math(\hat l^2 \varphi_{lmn}= \hbar^2l(l+1)\varphi_{lmn}); 
であるから、この関数の角運動量の大きさ &math(|\bm l|); は &math(\hbar\sqrt{l(l+1)}); であるが、
慣例として「角運動量の大きさが &math(\hbar l); のとき」などという。

角運動量の大きさが &math(\hbar l); であるとき、その &math(z); 成分 &math(l_z); が 
&math(-\hbar l\le \hbar m\le \hbar l); を満たすのは当然と思えるはずである。
&math(m=\pm l); のときも、不確定性により &math(l_x,l_y); は完全にはゼロとならず、
&math(l_x^2+l_y^2=\hbar^2 l); となる。これが &math(|\bm l|^2=\hbar^2l^2); とはならず、
&math(|\bm l|^2=\hbar^2l(l+1)); となる理由である。

波動関数 &math(\varphi_{nml}(\bm r)=R_n{}^l(r)Y_l{}^m(\theta,\phi)); 
を全空間で積分すれば1になることから、&math(R(r),\Theta(\theta),\Phi(\phi)); はそれぞれ、
を全空間で積分した際に1となるよう規格化するためには、&math(R(r),\Theta(\theta),\Phi(\phi)); をそれぞれ、

 &math(
&\iiint|\varphi(\bm r)|^2d^3r=\\
&\int_0^\infty dr\int_0^\pi r\sin\theta\,d\theta\int_0^{2\pi}r\,d\phi\ |\varphi(\bm r)|^2=\\
&\underbrace{\int_0^\infty r^2|R(r)|^2dr}_{\displaystyle=1}\ 
\underbrace{\int_0^\pi \sin\theta|\Theta(\theta)|^2 d\theta}_{\displaystyle=1}\ 
\underbrace{\int_0^{2\pi}|\Phi(\phi)|^2 d\phi}_{\displaystyle=1}=1
);

となるように正規化される。
となるように規格化すればよい。((これを &math(1\times 1\times 1); ではなく &math(1/4\pi\times 2\times 2\pi); となるよう規格化しても構わないのだが、球面調和関数の定義が上記の規格化を採用しているため、ここでもこれに従う))

&math(R(r)); に対する積分に &math(r^2);、
&math(\Theta(\theta)); に対する積分に &math(\sin\theta); の重みが
それぞれかかることに注意せよ。

それぞれの正規直交性は、

 &math(
\int_0^\infty \big\{rR_n{}^l(r)\big\}^*\big\{rR_{n'}{}^l(r)\big\}\,dr=\delta_{nn'}
);

 &math(
\int_0^\pi \sin\theta\ \Theta_l^m(\theta)^*\Theta_{l'}^m(\theta) d\theta=\delta_{ll'}
);

 &math(
\int_0^{2\pi}\Phi_m(\phi)^*\Phi_{m'}(\phi) d\phi=\delta_{mm'}
);

であり、このとき

 &math(
\iiint\varphi_{lmn}^*(\bm r)\varphi_{l'm'n'}(\bm r)d^3r
&=\delta_{ll'}\delta_{mm'}\delta_{nn'}\\
&=\begin{cases}
\ 1&(l=l',\, m=m',\, n=n')\\
\ 0&(それ以外)\\
\end{cases}
);

が成り立つ。

~
[[前の単元 <<<>量子力学Ⅰ/群速度と波束の崩壊]]
             [[量子力学Ⅰ]]             
[[>>> 次の単元>量子力学Ⅰ/角運動量の固有関数]]~

* 質問・コメント [#q69076f4]

#article_kcaptcha


Counter: 34040 (from 2010/06/03), today: 4, yesterday: 0