量子力学Ⅰ/確率密度の保存 のバックアップ差分(No.1)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[量子力学I/波動関数の解釈]]

** 全確率の保存 [#i7b418d2]

ある時刻において規格化した波動関数がシュレーディンガー方程式に従って時間発展する時、
確率密度が増えたり減ったりしてはおかしなことになる。この点を確認しよう。

 &math(
\frac{d}{dt}\iiint|\psi(\bm r,t)|^2\,d\bm r
&=\iiint\psi^*\frac{\PD\psi}{\PD t}+\frac{\PD\psi^*}{\PD t}\psi\,d\bm r\\
&=\frac{i\hbar}{2m}\iiint\psi^*(\nabla^2\psi)-(\nabla^2\psi^*)\psi\,d\bm r\\
&=\frac{i\hbar}{2m}\iiint\bm \nabla\cdot\big[\psi^*(\bm \nabla\psi)-(\bm \nabla\psi^*)\psi\big]\,d\bm r\\
&=\frac{i\hbar}{2m}\iint_S\big[\psi^*(\bm \nabla\psi)-(\bm \nabla\psi^*)\psi\big]\cdot \bm n\,dS\\
);

最後の等式はガウスの定理を用いて体積積分を面積積分に直した。
ここでは積分範囲を無限大に取っているためその表面というのは考えづらいが、
&math(\psi); が有限範囲内のみゼロでない値を取る場合を想定し、
それより大きな範囲を取ると考えれば問題ない。

そのような場合、表面 &math(S); 上で積分内の関数はゼロになるため、

 &math(\frac{d}{dt}\iiint|\psi(\bm r,t)|^2\,d\bm r=0);

シュレーディンガー方程式に従った時間発展では全確率密度が保存されることが分かった。

** 確率密度の流れ [#tff807cf]

上記の計算において積分領域を有限に取れば、
右辺の積分は領域外から領域内へ入ってくる確率密度であると解釈できる。((ピンと来なければ電磁気学で学んだ電荷の保存則の部分を復習せよ))
すなわち、積分内の符号を反転した

 &math(
\bm S(\bm r,t)&=-\frac{i\hbar}{2m}\big[\psi^*(\bm \nabla\psi)-(\bm \nabla\psi^*)\psi\big]);

あるいはこれを変形した、

 &math(
\bm S(\bm r,t)&=\frac{\hbar}{2mi}\big[\psi^*(\bm \nabla\psi)-\{\psi^*(\bm \nabla\psi)\}^*\big]\\
&=\frac{\hbar}{2mi}\cdot 2\,\mathrm{Im}\Big[\psi^*(\bm \nabla\psi)\Big]\\
&=\mathrm{Re}\Big[\psi^*\frac{\hbar\bm \nabla}{mi}\psi\Big]\\
);

が局所的な確率密度の流れを表わす(単位面積当たり、単位時間当たりの流量)。

多数の電子が同じ波動関数に従って移動しているような場合には、
この &math(\bm S); に素電荷 &math(e); を掛けた物が電流密度になるなど、
物理的な意味も大きい。


Counter: 0 (from 2010/06/03), today: 0, yesterday: 0