量子力学Ⅰ/調和振動子 のバックアップ差分(No.1)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[量子力学I]]

* 1次元の調和振動子 [#l80144e9]

調和振動子のポテンシャルは &math(V(x)=\frac{1}{2}kx^2); であるから、時間に依存しないシュレーディンガー方程式は

 &math(
\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+\frac{k}{2}x^2\right)\psi(x)=E\psi(x)
);

このような方程式を解く場合には、変数を無次元化するのが常套手段である。
すなわち、長さの次元を持つ自由変数 &math(x); を変数変換して、無次元の量 &math(\xi); で記述する。
ここでは、

 &math(\xi=\sqrt{\frac{m\omega}{\hbar}}x);, &math(\lambda=\frac{2E}{\hbar\omega});

と置くと良い。ただし、&math(\omega=\sqrt{\frac{k}{m}}); は古典論から得られる角振動数である。
すると与式は、

 &math(
\left(-\frac{d^2}{d\xi^2}+\xi^2-\lambda\right)\psi(\xi)=0
);

となる。&math(\xi); の大きなところでは &math(\lambda\ll \xi^2); となるから、
そこでは &math(\psi); は近似的に次の方程式を満たす。

 &math(
\frac{d^2}{d\xi^2}\psi(\xi)=\xi^2\psi(\xi)
);

ここから予想されるのは、

 &math(
\psi(\xi)=H(\xi)e^{\pm\xi^2/2}
);

という解の形である。系が &math(x=0); 付近に束縛されていることから、
複号は負を取る。

 &math(
&-\frac{d^2}{d\xi^2}\big[H(\xi)e^{-\xi^2/2}\big]+\xi^2H(\xi)e^{-\xi^2/2}-\lambda H(\xi)e^{-\xi^2/2}\\
&=-\frac{d}{d\xi}\big[H'(\xi)e^{-\xi^2/2}-\xi H(\xi)e^{-\xi^2/2}\big]+\xi^2H(\xi)e^{-\xi^2/2}-\lambda H(\xi)e^{-\xi^2/2}\\
&=-H''(\xi)e^{-\xi^2/2}+2\xi H'(\xi)e^{-\xi^2/2}+H(\xi)e^{-\xi^2/2}-\lambda H(\xi)e^{-\xi^2/2}\\
&=0\\
);

両辺を &math(e^{-\xi^2/2}\ne 0); で割れば、

 &math(
H''(\xi)=2\xi H'(\xi)+(1-\lambda) H(\xi)
);

を得る。&math(H(\xi)=\sum_{l=0}^\infty c_l\xi^l); と置いて代入すれば、

 &math(
\sum_{l=0}^\infty l(l-1)c_l\xi^{l-2}=2\xi \sum_{l=0}^\infty l c_l\xi^{l-1}+(1-\lambda) \sum_{l=0}^\infty c_l\xi^l
);

より &math(l\ge 0); において、

 &math((l+2)(l+1)c_{l+2}=(2l+1-\lambda)c_l);~

 &math(c_{l+2}=\frac{2l+1-\lambda}{(l+2)(l+1)}c_l);~

を得る。この式によれば、&math(c_0); を適当に決めると &math(c_{2n}); が、
&math(c_1); を適当に決めると &math(c_{2n+1}); が、
それぞれすべて決まることになる。

&math(c_0=0); あるいは &math(c_1=0); あるいは &math(2l+1-\lambda=0); が成立すれば、
それより大きな &math(l); に対して &math(c_l); がゼロになるが、
そうでない限り &math(c_l); がゼロになることはない。

&math(c_l); がゼロにならない場合、&math(l\to \infty); において

 &math(\frac{c_{l+2}}{c_l}=\frac{2l+1-\lambda}{(l+2)(l+1)}\to \frac{2}{l});~

が成り立つ。これは 

 &math(f(\xi)=e^{2\xi^2}=frac{1}{0!}+\frac{2}{1!}\xi^2+\frac{2^2}{2!}\xi^4+\frac{2^3}{3!}\xi^6+\dots);

とした時の係数の比と同じであり、このようになっていては 
&math(H(\xi)e^{-\xi^2/2}); が &math(\xi\to\pm\infty); 
でゼロに収束するという境界条件を満たさない。

すなわち、&math(c_0); あるいは &math(c_1); のどちらかがゼロであり、
もう一方と同じ偶奇性(パリティ)を持つある &math(l=n); において
&math(\lambda=2l+1); が成立することが境界条件から要求され、
その結果 &math(c_l\ne 0); となる項は有限個となる。

- &math(n=0); のとき &math(\lambda=1);, &math(H_0(\xi)=1);
- &math(n=1); のとき &math(\lambda=3);, &math(H_1(\xi)=2\xi);
- &math(n=2); のとき &math(\lambda=5);, &math(H_2(\xi)=4(1-2\xi^2));
- &math(n=3); のとき &math(\lambda=7);, &math(H_3(\xi)=c_1(\xi-\frac{2}{3}\xi^3));
- &math(n=4); のとき &math(\lambda=8);, &math(H_4(\xi)=c_0(1-4\xi^2+\frac{4}{3}\xi^4));
- ・・・

ここで現れた多項式 &math(H_n(\xi)); はエルミートの多項式と呼ばれる。

* 3次元の調和振動子 [#y596d643]


Counter: 165673 (from 2010/06/03), today: 83, yesterday: 0