電磁気学/Coulomb の法則 のバックアップ(No.8)

更新


電磁気学

目次

§3 Coulomb (クーロン) の法則

電場の大きさ

距離 R だけ離れた位置にある電荷 e' から及ぼされる力と電場

  • 電荷に比例
  • 距離の二乗に反比例

  F=k\frac{ee'}{R^2}=\frac{1}{4\pi\epsilon_0}\frac{ee'}{R^2}     E=\frac{1}{4\pi\epsilon_0}\frac{e'}{R^2}

比例係数を \epsilon_0 : 真空の誘電率 を用いて表わし、電荷の単位を決定した。

電場の向き

electric_field_direction.png

R=|\bm x-\bm x'|

  E=\frac{1}{4\pi\epsilon_0}\frac{e'}{|\bm x-\bm x'|^2}

  \bm e_R=\frac{\bm x-\bm x'}{|\bm x-\bm x'|}

  \bm E=E\bm e_R=\frac{1}{4\pi\epsilon_0}\frac{e'}{|\bm x-\bm x'|^2}\frac{\bm x-\bm x'}{|\bm x-\bm x'|}

e'>0 かつ e>0 としたときに e' から遠ざかる向きの力(斥力)を受けるよう、正しく符号が決まっていることを確認せよ。

複数の電荷があった場合

\bm x_1 e_1 \bm x_2 e_2 、・・・、 \bm x_n e_n があるとき、 全体の電場は個々の電場の重ね合わせで求められる。

  \bm E(\bm x)=\sum_i\bm E_i(\bm x)=\frac{1}{4\pi\epsilon_0}\sum_i\frac{e_i}{|\bm x-\bm x_i|^2}\frac{\bm x-\bm x_i}{|\bm x-\bm x_i|}

電気力線

複数の電荷からなる電場の様子を思い浮かべやすいよう、電気力線を導入する。

電気力線は、

  • 方向は各点での電場と平行になるように、
  • 密度は電場の強さに比例するように、

空間中に引かれた有向曲線。

線の密度と電場の強さとの間の比例係数は特に決まっていないため、 電場の様子が分かりやすい程度の密度を選んで表示すればよい。

electric_flux1.png

     electric_flux2.png

以下では、上記のルールに従って引いた電気力線が次の性質を持つことを見ていく。

  • 正電荷は電気力線の湧き出し点となる
  • 負電荷は電気力線の吸い込み点となる
  • 電荷のない場所で電気力線は途切れない

点電荷から湧き出す電気力線の数

点電荷 e を中心とした半径 R の球面から出て行く電気力線の本数を次のようにして求める。

 &math( (電気力線の本数)&=(電気力線の密度)\times (面積)\\ &\propto(電場の強さ)\times (面積)\\ &=\Big(\frac{1}{\cancel{4\pi}\epsilon_0}\frac{e'}{\cancel{R^2}}\Big)\times \Big(\cancel{4\pi R^2}\Big)\\ &=\frac{e'}{\epsilon_0} );

1\,\mathrm{C} あたり 1/\epsilon_0 の湧き出しがあることになる (実際に図にする際には比例係数は任意に選べる)。

R に依らず一定値であることは、 電気力線が電荷のない場所で途切れないことに対応している。

一般の閉曲面からの湧き出し

点電荷を囲む任意の閉曲面を考えて、そこからの湧き出し量を求めよう。

coulomb1.png

面と電場が垂直に交わらない場合に湧き出し量をどう計算する?
→ 電気力線の垂直成分のみが湧き出しに寄与すると考えればいい

  |\bm E|\cdot dS\cdot \cos\theta=\bm E\cdot\bm n\,dS

ここで \bm n は面素 dS の法線ベクトルである。

なぜか? もし面素 dS \bm E と垂直であれば湧き出し量は |\bm E|dS であるが、面素 dS は傾いているため電場に垂直な 面に投影した際の面積は dS'=dS\,\cos\theta である。 |\bm E| にこの面積をかけたのが上の式である。

この面素が点電荷から R の距離にあり、対応する立体角が d\Omega であるとすれば、

  dS'=dS\,\cos\theta=R^2d\Omega

  |E|=\frac{1}{4\pi\epsilon_0}\frac{e'}{R^2}

であるから、

  \bm E\cdot\bm n\,dS=\frac{1}{4\pi}\frac{e'}{\epsilon_0}d\Omega

R によらず、立体角 d\Omega だけで表される量になる。

これを閉曲面全体にわたって積分すると、

  \int_S\bm E\cdot\bm n\,dS=\frac{1}{4\pi}\frac{e'}{\epsilon_0}\underbrace{\int_{4\pi} d\Omega}_{=\,4\pi}=\frac{e'}{\epsilon_0}

となり、傾いた面素からの湧き出し量と、球面からの湧き出し量は等しくなる(当然?)。

点電荷が閉曲面の外にあるとき

coulomb2.png

e が閉曲面 S の外にあるとき、 S 上の面素 dS' dS'' とを通過する湧き出し量は、どちらも図の球面上の面素 dS (立体角を共有する)と等しくなる。

ただし、 dS' における湧き出しは逆向きであるから、 dS'' からの湧き出しと dS' からの湧き出しを加えると打ち消し合ってゼロになる。

同様に、 S 上のすべての領域は、ちょうどそれを打ち消す「裏側の」面素を持つため、 S 全体からの湧き出しはゼロになる。

  \int_S\bm E\cdot\bm ndS=0

点電荷が複数あるとき

ここまで点電荷が1つだけある、という特殊な場合について考えてきたが、 上記の結果から以下の重要な法則が導ける。

点電荷が複数ある場合の湧き出しを、ここの点電荷の作る電場に分解して求めれば、

 &math( \int_S\bm E(\bm x)\cdot\bm n(\bm x)dS

&=\sum_i\int_S\bm E_i(\bm x)\cdot\bm n(\bm x)dS\\
&=\Big(\sum_{S の内部}\frac{1}{\epsilon_0}e_i\Big) + 
  \Big(\sum_{S の外部} 0\Big)\\
&=\frac{1}{\epsilon_0}\Big(\sum_{S の内部}e_i\Big)=\frac{1}{\epsilon_0}\Big(S の内部の総電荷量\Big)

);

となり、湧き出し量を S 内部の総電荷量だけで表せることが分かる。

\bm E(\bm x) には外部にある電荷の寄与を含めているにもかかわらず、 この積分値には外部の電荷が寄与しないところが重要。

電荷が連続分布するとき

電荷密度 \rho(\bm x)

\bm x の周辺に d^3x=dx\times dy\times dz の体積要素を取れば、 その中に含まれる電荷量は

  \rho(\bm x)d^3x

このとき、

  \int_S\bm E(\bm x)\cdot\bm n(\bm x)dS=\frac{1}{\epsilon_0}\int_V\rho(\bm x)d^3x

ただし、 V は閉曲面 S に囲まれる体積。

これが積分形式の Coulomb の法則である。

Gauss の定理

任意の滑らかなベクトル場 \bm E(\bm x) に対して、 ある体積 V を囲む閉曲面 S からの湧き出しが、 \bm E の発散 \DIV \bm E の体積積分で表わされるという定理。

  \int_S \bm E\cdot\bm n \,dS=\int_V\DIV\bm E\,d^3x

解説は → Gauss の定理

Coulomb の法則(微分形)

上記より、

  \int_V\DIV\bm E(\bm x)\,d^3x=\frac{1}{\epsilon_0}\int_V\rho(\bm x)d^3x

これが任意の V に対して成り立つには、積分の中身が等しくなければならない。

  \DIV\bm E(\bm x)=\frac{1}{\epsilon_0}\rho(\bm x)

この式は、

  • 点電荷の電場が距離の自乗に反比例して減衰すること
  • 電場が重ね合わせられること

から導出されたことを確認せよ。

電位

後に詳しく見るが、静電場では以下の式で電位 \phi(\bm x) が定義可能。

 &math(\phi(\bm x)-\phi(\bm 0)=-\int_{\bm 0}^{\bm x}\bm E(\bm x)\cdot d\bm r =-\int_{\bm 0}^{\bm x}E_xdx+E_ydy+E_zdz);

このとき、

  \bm E(\bm x)=-\grad \phi(\bm x)

電場は電位の傾きのようなもの。1次元ではそれれぞれ、

  \phi(x)-\phi(0)=-\int_0^x E(x)dx

  E(x)=-\frac{d\phi}{dx}

(後でちゃんとやるので、ここでは深入りしない。念のため復習した)

次元と電場・電位

点電荷 (3次元系)

点電荷 e を中心とする半径 r の球面からの発散を考えれば、

3d.png

|\bm E(r)|\cdot \underbrace{4\pi r^2}_{球面積}=\frac{1}{\epsilon_0}e

より、

  \bm E(r)=\frac{1}{4\pi\epsilon_0}\frac{e}{r^2}

  \phi(r)=\phi(r)-\phi(\infty)=-\int_{\infty}^r E(r)dr=\frac{1}{2\pi\epsilon_0}\frac{e}{r}

  • 電場は半径の2乗に反比例する
  • 電位は半径に反比例する

線電荷 (2次元系)

線電荷密度 \sigma_1 の線電荷を中心とする半径 r 、長さ L の円柱からの発散を考えれば、

2d.png

 &math(|\bm E(r)|\cdot \underbrace{2\pi rL}_{側面積}=

     \frac{1}{\epsilon_0}\underbrace{\sigma_1L}_{電荷});

より、

  \bm E(r)=\frac{1}{2\pi\epsilon_0}\frac{\sigma_1}{r}

  \phi(r)=\phi(r)-\phi(r_0)=-\int_{r_0}^r E(r)dr=\frac{\sigma_1}{2\pi\epsilon_0}\ln \frac{r_0}{r}

  • 電場は半径に反比例する
  • 電位は半径に対して対数的になる
  • 電位は円筒中心( r=0 )でも、無限遠( r=\infty )でも発散する

面電荷 (1次元系)

面電荷密度 \sigma_2 の面電荷を挟んで底面積 S 、高さ 2h の柱を考え、 その発散を考えれば、

1d.png

 &math(|\bm E(h)|\cdot\hspace{-5mm}\underbrace{2S}_{両側の底面積}\hspace{-5mm}=

     \frac{1}{\epsilon_0}\underbrace{\sigma_2S}_{電荷});

より、

  \bm E(h)=\frac{1}{2\epsilon_0}\sigma_1

  \phi(h)=\phi(h)-\phi(0)=-\int_0^h E(h)dh=\frac{1}{2\epsilon_0}\sigma_1h

  • 電場は面からの距離によらない
  • 電位は面からの距離に比例する

動電場では

実は電場が時間に依存するときにも、

  \DIV\bm E(\bm x,t)=\frac{1}{\epsilon_0}\rho(\bm x,t)

が成り立つ。

系が時間に依存するときには、必ずしも電荷が無くても電場生じる。 電荷によらない電場には湧き出し・吸い込みは無いため、必ずループ状になる。

磁場に対する Coulomb 則

「磁荷」は存在しないため、磁場は必ずループになる。

  \DIV\bm B(\bm x,t)=0

磁場はN極から出てS極に入るんじゃないの?

magnet1.png

実は中で繋がってるんです。

magnet2.png

質問・コメント





Counter: 17416 (from 2010/06/03), today: 3, yesterday: 3