スピントロニクス理論の基礎/8-7 の履歴(No.2)
更新8-7 自由電子の場合の具体例†
(8.80)
(8.29) の を代入し (8.23) と同様の変形をする。
&math( &\dot c_\mathrm H(\bm k)=\frac{i}{\hbar}[H_{0\mathrm H},c_\mathrm H(\bm k)]\\ &=\frac{i}{\hbar}U^\dagger[H_0,c(\bm k)]U\\ &=\frac{i}{\hbar}U^\dagger\sum_{\bm k'}\left(\frac{\hbar^2 k'^2}{2m}-\varepsilon_F\right)[c^\dagger(\bm k') c(\bm k'),c(\bm k)]U\\ &=\frac{i}{\hbar}U^\dagger\sum_{\bm k'}\varepsilon_{\bm k'}\Big(c^\dagger(\bm k')\{ c(\bm k'),c(\bm k)\}-\{c^\dagger(\bm k'),c(\bm k)\}c(\bm k')\Big)U\\ &=-\frac{i}{\hbar}U^\dagger\sum_{\bm k'}\varepsilon_{\bm k'}\delta^3(\bm k-\bm k')c(\bm k')U\\ &=-\frac{i}{\hbar}\varepsilon_{\bm k}U^\dagger c(\bm k)U\\ &=-\frac{i}{\hbar}\varepsilon_{\bm k}c_\mathrm H(\bm k)\\ );
(8.81),(8.82)
&math( c_\mathrm H(\bm k,t)&=e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}c_\mathrm H(\bm k,t_0)\\ &=e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}c(\bm k,t_0)\\ &=U^\dagger(t-t_0)c(\bm k,t_0)U(t-t_0)\\ &=e^{\frac{i}{\hbar}H_0(t-t_0)}c(\bm k,t_0)e^{-\frac{i}{\hbar}H_0(t-t_0)} );
に注意。
「等価である」について検証:
は消滅演算子なので、波数
を持つ粒子が1ついる状態
に作用させるとその粒子が消滅する。その際の係数は 1 である。
→ フェルミオンの交換関係
つまり、
そして、この状態は の固有状態であるから、
&math( &c_\mathrm H(\bm k)\ket{1}_{\bm k} \\ &= e^{\frac{i}{\hbar}H_0(t-t_0)}c(\bm k)e^{-\frac{i}{\hbar}H_0(t-t_0)}\ket{1}_{\bm k} \\ &= e^{\frac{i}{\hbar}H_0(t-t_0)}c(\bm k)e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}\ket{1}_{\bm k} \\ &= e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}e^{\frac{i}{\hbar}H_0(t-t_0)}\ket{0}_{\bm k}\\ &= e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}e^{\frac{i}{\hbar}0(t-t_0)}\ket{0}_{\bm k}\\ &= e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}\ket{0}_{\bm k}\\ &= e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t_0)}c(\bm k)\ket{1}_{\bm k}\\ );
確かに矛盾していない。
(8.83)
ただし、
&math(&=\frac{\sum_\alpha e^{-\beta\varepsilon_\alpha} \braket{\alpha|c^\dagger(\bm k,t_0) c(\bm k,t_0)|\alpha}}{Z_0}\\ &=\frac{ e^{-\beta 0} \braket{0|c^\dagger(\bm k,t_0) c(\bm k,t_0)|0}
- e^{-\beta\varepsilon_{\bm k}} \braket{1|c^\dagger(\bm k,t_0) c(\bm k,t_0)|1}} {e^{-\beta 0} \braket{0|0}
- e^{-\beta\varepsilon_{\bm k}} \braket{1|1} }\\ &=\frac{ e^{-\beta 0} \braket{0|c^\dagger(\bm k,t_0)\cdot 0|0}
- e^{-\beta\varepsilon_{\bm k}} \braket{1|c^\dagger(\bm k,t_0)|0}} {1+e^{-\beta\varepsilon_{\bm k}}}\\ &=\frac{ e^{-\beta\varepsilon_{\bm k}} \braket{1|1}} {1+e^{-\beta\varepsilon_{\bm k}}} =\frac{e^{-\beta\varepsilon_{\bm k}}}{1+e^{-\beta\varepsilon_{\bm k}}} =\frac{1}{e^{\beta\varepsilon_{\bm k}}+1});
同様に、
ただし、
&math( &=\frac{\sum_\alpha e^{-\beta\varepsilon_\alpha} \braket{\alpha|c(\bm k,t_0) c^\dagger(\bm k,t_0)|\alpha}}{Z_0}\\ &=\frac{ e^{-\beta 0} \braket{0|c(\bm k,t_0) c^\dagger(\bm k,t_0)|0}
- e^{-\beta\varepsilon_{\bm k}} \braket{1|c(\bm k,t_0) c^\dagger(\bm k,t_0)|1}} {e^{-\beta 0} \braket{0|0}
- e^{-\beta\varepsilon_{\bm k}} \braket{1|1} }\\ &=\frac{ e^{-\beta 0} \braket{0|c^\dagger(\bm k,t_0)|1}
- e^{-\beta\varepsilon_{\bm k}} \braket{1|c(\bm k,t_0)\cdot 0|1}} {1+e^{-\beta\varepsilon_{\bm k}}}\\ &=\frac{ e^{-\beta 0} \braket{0|0}} {1+e^{-\beta\varepsilon_{\bm k}}} =\frac{1}{1+e^{-\beta\varepsilon_{\bm k}}} =\frac{e^{\beta\varepsilon_{\bm k}}}{e^{\beta\varepsilon_{\bm k}}+1} =1-\frac{1}{e^{\beta\varepsilon_{\bm k}}+1});
このように詳細に計算しても求まるが、もともとの反交換関係が
なので、
としてしまえば計算の必要は無い。
→ フェルミオンの交換関係
(8.84)
[Math Conversion Error]
(8.83) で が出るのは、
&math(\braket{\alpha|c^\dagger_\mathrm H(\bm k') c_\mathrm H(\bm k)|\alpha} =\braket{c_\mathrm H(\bm k')\alpha|c_\mathrm H(\bm k)\alpha}=\delta_{\bm k,\bm k'});
すなわち の時、
となるためである。
(8.85)
&math(g_{0\bm k\omega\omega'}^< &=i\frac{1}{\hbar}\int_{-\infty}^\infty dt\int_{-\infty}^\infty dt'
e^{i\omega t-i\omega' t'} e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t')} f(\varepsilon_{\bm k})\\
&=i\frac{1}{\hbar}\int_{-\infty}^\infty dt\int_{-\infty}^\infty dt'
e^{\frac{i}{\hbar}[(\hbar\omega-\varepsilon_{\bm k}) t-(\hbar\omega'-\varepsilon_{\bm k}) t']} f(\varepsilon_{\bm k})\\
&=i\hbar 2\pi\delta(\hbar\omega-\varepsilon_{\bm k})2\pi\delta(\hbar\omega'-\varepsilon_{\bm k})f(\varepsilon_{\bm k})\\ &=2\pi\delta(\omega-\omega')\cdot 2\pi i\delta(\hbar\omega-\varepsilon_{\bm k})f(\varepsilon_{\bm k})\\ &=2\pi\delta(\omega-\omega')\cdot g_{0\bm k\omega}^<);
および を使った。
同様にして、
&math(g_{0\bm k\omega\omega'}^> &=-i\frac{1}{\hbar}\int_{-\infty}^\infty dt\int_{-\infty}^\infty dt'
e^{i\omega t-i\omega' t'} e^{-\frac{i}{\hbar}\varepsilon_{\bm k}(t-t')}[1- f(\varepsilon_{\bm k})]\\
&=2\pi\delta(\omega-\omega')\cdot -2\pi i\delta(\hbar\omega-\varepsilon_{\bm k})[1-f(\varepsilon_{\bm k})]\\ &=2\pi\delta(\omega-\omega')\cdot g_{0\bm k\omega}^>);
(8.88)
&math( g_{0\bm k\omega}^r &=\frac{1}{\hbar}\int_{-\infty}^\infty dt\int_{-\infty}^\infty dt'
e^{i\omega t-i\omega' t'} \theta(t-t')\Big(g_{0\bm k}^>(t,t')-g_{0\bm k}^<(t,t')\Big)\\
&=\frac{1}{\hbar}\int_{-\infty}^\infty dt'e^{i(\omega-\omega') t'} \int_{-\infty}^\infty dt
e^{i\omega (t-t')}\theta(t-t') \Big(g_{0\bm k}^>(t-t')-g_{0\bm k}^<(t-t')\Big)\\
&=\frac{1}{\hbar}\int_{-\infty}^\infty dt'e^{i(\omega-\omega') t'} \int_0^\infty dt''
e^{i\omega t''} \Big(g_{0\bm k}^>(t'')-g_{0\bm k}^<(t'')\Big)\\
&=2\pi\delta(\omega-\omega')\cdot\frac{1}{\hbar}\int_0^\infty dt''
e^{i\omega ''} \Big(-ie^{-\frac{i}{\hbar}\varepsilon_{\bm k}t''}(1-f_{\bm k}) -ie^{-\frac{i}{\hbar}\varepsilon_{\bm k}t''}f_{\bm k}\Big)\\
&=2\pi\delta(\omega-\omega')\cdot\textcolor{red}{-}\frac{i}{\hbar}\int_0^\infty dt''
e^{i\omega t''} e^{-\frac{i}{\hbar}\varepsilon_{\bm k}t''}\\
&=2\pi\delta(\omega-\omega')\cdot\textcolor{red}{-}\frac{i}{\hbar}\int_0^\infty dt''
e^{-\frac{i}{\hbar}(\varepsilon_{\bm k}-\hbar\omega)t''}\\
);