三次元空間での散乱現象/メモ のバックアップ(No.3)

更新


確率密度の保存

計算途中で検算もまだです。

&math( S_{r} &=\mathrm{Re}\left[\varphi^*(r,\theta,\phi)\frac{\hbar}{im}\frac{\PD}{\PD r}\varphi(r,\theta,\phi)\right]\\ &=\mathrm{Re}\left[\frac{\hbar}{im} \left\{e^{-ik_0r\cos\theta}+\frac{e^{-ik_0r}}{r}f^*(\theta,\phi)\right\} \left\{ik_0\cos\theta e^{ik_0r\cos\theta}

  1. \left(-\frac{1}{r^2}+\frac{ik_0}{r}\right)e^{ik_0r}f(\theta,\phi)\right\} \right]\\ &=\frac{\hbar}{m}\mathrm{Re}\left[k_0\cos\theta+\frac{k_0}{r^2}|f(\theta,\phi)|^2
  2. \frac{k_0\cos\theta}{r}e^{-ik_0r(1-\cos\theta)}f^*(\theta,\phi)
  3. \left(-\frac{1}{ir^2}+\frac{k_0}{r}\right)e^{ik_0r(1-\cos\theta)}f(\theta,\phi) \right]\\ &=\frac{\hbar}{m}\left\{k_0\cos\theta+\frac{k_0}{r^2}|f(\theta,\phi)|^2
  4. \left(\frac{k_0(1+\cos\theta)}{r}\mathrm{Re}Z-\frac{1}{r^2}\mathrm{Im}Z\right)\right\} );

ただし、 Z=e^{ik_0r(1-\cos\theta)}f(\theta,\phi)

ラザフォード散乱

LANG:mathematica
PolarPlot[
  1/(1 + {0.5, 1, 2, 4}^2 Sin[t/2]^2) // Evaluate, {t, 0, 2 Pi}, 
  PlotLegends -> {"A=0.5", "A=1", "A=2", "A=4"}
]

PolarPlot[
  1/(1 + {0.25, 1, 4, 16} Sin[t/2]^2)^2 // Evaluate, {t, 0, 2 Pi}, 
  PlotLegends -> {"A=0.5", "A=1", "A=2", "A=4"}
]

Counter: 1440 (from 2010/06/03), today: 1, yesterday: 0