静止物体中の Maxwell の方程式 のバックアップソース(No.12)
更新- バックアップ一覧
- 差分 を表示
- 現在との差分 を表示
- バックアップ を表示
- 電磁気学/静止物体中の Maxwell の方程式 へ行く。
[[電磁気学]] #contents * 静止物体 [#od849161] 物体は非常に多数の荷電粒子(電子および原子核)から構成されるが、 電子と原子核は空間的に重なって存在するため、 通常ほぼすべてが互いに打ち消し合って、遠くから見た際に電荷の存在を無視できる。 そこで、 - 打ち消される電荷を無視し、 - 残った電荷や電流のみを考えたい 例)1kgの鉄球から、1兆個 = &math(10^{12}); 個に1個の電子を取り出して、もう1つの鉄球に移す。 それら2つの鉄球を1m 離して置くと %%40トン以上%% 1 kg 以上の力で互いに引き合う。~ (2014-07-14 間違いを修正しました。大変申し訳ありません。) 普段、正の電荷と負の電荷がどれほど精密に打ち消し合っているかが分かる。 * 打ち消されずに残るもの [#a81882b3] |LEFT:|CENTER:160|CENTER:160|CENTER:160|c ||~原子|~イオン|~自由電子| |~構成|核+電子|核+(内殻)電子|伝導電子| |~特徴|動けない&br;中性|動けない&br;電荷|動ける&br;電荷| |~電荷 &math(\rho);|BGCOLOR(#eee):|>|真電荷 &math(\rho_e);| |~|>|COLOR(#888):分極電荷 &math(\rho_d);|BGCOLOR(#eee):| |~電流 &math(\bm i);|>|COLOR(#888):分極電流 &math(\bm i_d);|伝導電流 &math(\bm i_e);| |~|>|>|COLOR(#888):磁化電流 &math(\bm i_m);| このように分類すると、 - 全電荷 &math(\rho=\rho_e+\rho_d+);(打ち消されてゼロになるため無視する電荷) - 全電流 &math(\bm i=\bm i_e+\bm i_d+\bm i_m+);(打ち消されてゼロになるため無視する電流) と書ける。 本章では、真電荷、伝導電流を主に考える(イオンと自由電子に由来) 打ち消されてゼロになる成分(中性分子、内殻電子など)は完全に無視する COLOR(#888){薄文字} はほぼ打ち消し合った電荷の消え残った影響~ → &math(\varepsilon,\mu); を介して間接的に取り扱う。 通常、静止物体中の電磁気学ではこの &math(\rho_e,\bm i_e); を単に &math(\rho,\bm i); と書く。 真空中の電磁気学で出てくる &math(\rho,\bm i); と定義が異なることに注意せよ。 * 分極 [#k9acc51e] 通常、原子の 負電荷(電子雲) &math(-e); の中心は、 正電荷(原子核) &math(+e); の中心と一致している。 ここに外場 &math(\bm E); がかかり、両者の中心が &math(\bm s); だけずれたとしよう。 負電荷の中心を &math(\bm x');、正電荷の中心を &math(\bm x'+\bm s); とする。 すなわち &math(\bm s); は負電荷から正電荷へのベクトル。 ~ &attachref(分極.png,,33%); ~ このとき遠く離れた &math(\bm x); における電位は、 &math(\phi(\bm x)=\frac{1}{4\pi\varepsilon_0}\left(\frac{+e}{|\bm x-(\bm x'+\bm s)|}+\frac{-e}{|\bm x-\bm x'|}\right)); &math(= \frac{1}{4\pi\varepsilon_0}e\bm s\cdot\GRAD\!_{\bm x'}\frac{1}{|\bm x-\bm x'|}); 電気双極子能率 &math(\bm p\equiv e\bm s); を導入すると、 &math(=\frac{1}{4\pi\varepsilon_0}\bm p\cdot\GRAD\!_{\bm x'}\frac{1}{|\bm x-\bm x'|}); &math(=\frac{1}{4\pi\varepsilon_0}\bm p\cdot\frac{1}{|\bm x-\bm x'|^2}\frac{\bm x-\bm x'}{|\bm x-\bm x'|}); を得る。このように正電荷と負電荷が近接する極限は「電気双極子」と呼ばれる。 &math(\bm p); は定数で、&math(\frac{1}{|\bm x-\bm x'|^2}\frac{\bm x-\bm x'}{|\bm x-\bm x'|}); の部分が &math(\bm x); の関数。 &math(\bm x'=\bm o); と置けば &math(\frac{1}{r^2}\frac{\bm r}{r}); の形になるから、 この部分は下図のように &math(\bm x'); を中心にして外へ向くベクトル場で、 その大きさは距離の二乗に反比例する。 &attachref(grad 1 over r - 2d.png,,25%); &attachref(grad 1 over r - 3d.png,,25%); 実際の電位分布はこれと &math(\bm p); との内積をとった物となる。 例えば &math(\bm s); が &math(+x); 方向であれば上記ベクトル場の &math(x); 座標がそのまま電位となるから、左下のようなグラフになる。 右下は電位分布を微分して得られる「電場」。 &attachref(dielectric polarization-1.jpg,,25%); &attachref(dielectric polarization-2.png,,25%); 点電荷による電位が距離に反比例して減衰するのに対して、 分極した原子(電気双極子)による電位は距離の二乗に反比例する。 電場の形は [[棒磁石の周りにできる磁力線:http://www.google.co.jp/search?q=%E6%A3%92%E7%A3%81%E7%9F%B3+%E7%A3%81%E5%8A%9B%E7%B7%9A&tbm=isch]] をイメージするとよい。 事実、「非常に小さな棒磁石」は''磁気''双極子そのものとなる。 具体的な形を4章でもう少し詳しく見ることになる。 Mathematica ソース: &attachref(Mathematica.pdf); * 分極の連続分布 [#df6b1bbf] 電気双極子能率を持つ分子や原子が空間的に敷き詰められており、 微小体積 &math(d^3x); の分極率を体積に比例する形で、 &math(d\bm p=\bm P(\bm x)d^3x); と書けるとする。この分極密度 &math(\bm P(\bm x)); により生じる電位は、 &math(\phi_d(\bm x)=\frac{1}{4\pi\varepsilon_0}\int_V \bm P(\bm x')\cdot\GRAD\!_{\bm x'}\frac{1}{|\bm x-\bm x'|}\,d^3x'); 次の微分公式を用いて変形すると、 &math(\DIV\!_{\bm x'}\frac{\bm p(\bm x')}{|\bm x-\bm x'|}=\frac{\DIV\!_{\bm x'}\bm P(\bm x')}{|\bm x-\bm x'|}+\bm P(\bm x')\cdot\GRAD\!_{\bm x'}\frac{1}{|\bm x-\bm x'|}); &math(\phi_d(\bm x)=\frac{1}{4\pi\varepsilon_0}\int_V \DIV\!_{\bm x'}\frac{\bm P(\bm x')}{|\bm x-\bm x'|}\,d^3x'-\frac{1}{4\pi\varepsilon_0}\int_V \frac{\DIV\!_{\bm x'}\bm P(\bm x')}{|\bm x-\bm x'|}\,d^3x'); &math(=\frac{1}{4\pi\varepsilon_0}\int_S \frac{\bm P(\bm x')}{|\bm x-\bm x'|}\cdot\bm n\,dS-\frac{1}{4\pi\varepsilon_0}\int_V \frac{\DIV\!_{\bm x'}\bm P(\bm x')}{|\bm x-\bm x'|}\,d^3x'); 物質が系の外にはみ出していない限り、系の界面 &math(S); において、&math(\bm P(\bm x')=\bm o); となるから第1項は消えて、 &math(=\frac{1}{4\pi\varepsilon_0}\int_V \frac{-\DIV\!_{\bm x'}\bm P(\bm x')}{|\bm x-\bm x'|}\,d^3x'); この式を、真電荷 &math(\rho_e); に対する電位分布の式 &math(\phi_e(\bm x)=\frac{1}{4\pi\varepsilon_0}\int_V \frac{\rho_e(\bm x')}{|\bm x-\bm x'|}\,d^3x'); と比較すると、分極により &math(\rho_d(\bm x)=-\DIV\bm P(\bm x)); の電荷密度が生じたことが分かる。 電気双極子能率 &math(\bm p); は負電荷から正電荷に向けてのベクトルであるから、 &math(\bm P(\bm x)); に正の沸き出しがあれば、中心部には負電荷が残されることを表す。 個々の電荷は原子サイズ以下しか動かないにもかかわらず、 その空間的な偏りが大域的な電荷分布を生じる。 * 電荷保存則 [#z42cfa9f] 真電荷としてカウントされる伝導電子やホールが、原子からイオンを残して自由に動けるようになった電荷であるのに対して、分極電荷を生じる電荷は原子核と電子が強固に結びついている。 分極電荷を生じる荷電粒子がイオン化して真電荷となったり、その逆の過程が起きない限り、 真電荷の総量と、分極電荷の総量とは独立に保存する。すなわち、 - &math(\DIV\bm i_e+\frac{\PD\rho_e}{\PD t}=0); - &math(\DIV\bm i_d+\frac{\PD\rho_d}{\PD t}=0); 特に第2式は、 &math(\DIV\bm i_d-\frac{\PD\DIV\bm P(\bm x)}{\PD t}=0); &math(\DIV\left(\bm i_d-\frac{\PD\bm P(\bm x)}{\PD t}\right)=0); と書けるから、当然 &math(\bm i_d=\frac{\PD\bm P}{\PD t}); であればこの式を満たすが、実はこれはある関数 &math(\bm M(\bm x)); を用いて、 &math(\bm i_d-\frac{\PD\bm P}{\PD t}=-\ROT\bm M); となる場合にも電荷保存は成り立つ。 以降ではこれらを、 - 分極電流 &math(\bm i_d=\frac{\PD\bm p}{\PD t}); - 磁化電流 &math(\bm i_m=\ROT\bm M); と呼ぶ。 * 磁化電流 [#yf1865f1] 電荷保存則は、電流が流れれば電荷が移動する、という法則である。 にもかかわらず、電流 &math(\bm i_m); が流れても、流れなくても 電荷保存則に影響がないというのはどういう事か? 電荷保存則を正確に述べれば、電流に発散があれば、中心部の電荷が減少する、という意味になる。 電流に逆に発散がないときは電荷に変化を生じない。 発散のない電流は始点や終点を持たず、必ずループの形で流れることになる。 つまり、磁化電流はループの形で流れる電流。 さらにもう一つの疑問として、我々は「動ける電荷」である真電荷が作る電流を伝導電流 &math(\bm i_e); としてすでに取り入れた。残りは「動けない電荷」だけであるが、動けない電荷が電流を作ることは可能だろうか? ここで考える磁化電流 &math(\bm i_m); とは、空間的に移動しない電荷が、局所領域で回転運動することにより生じる電流である。そのような電流は微少な磁気双極子を形成する。 そのような電荷が空間のある領域に一定密度で分布するとき、内部を流れる電流の影響は互いに打ち消し合うが、領域の縁を流れる電流は打ち消されず残る。結果的に、個々の電荷は大きく移動しないにもかかわらず、あたかも領域の縁を一周する電流が流れているかのような磁場を発生させる。 磁化電流 &math(\bm i_m=\ROT \bm M); の &math(\bm M); を磁化ベクトルと呼び、&math(\bm M); を用いると局所体積あたりの磁気双極子能を &math(\bm M d^3x); と書き表せる。 * 物質中の Maxwell 方程式 [#gbca3ea3] 真空中の Maxwell 方程式の電荷および電流を - 全電荷 &math(\rho=\rho_e+\rho_d+);(打ち消されてゼロになるため無視する電荷) - 全電流 &math(\bm i=\bm i_e+\bm i_d+\bm i_m+);(打ち消されてゼロになるため無視する電流) と書き直し括弧内を無視することにより、 &math(\ROT\bm E(\bm x,t)+\frac{\PD\bm B(\bm x,t)}{\PD t}=\bm o); &math(\DIV\bm B(\bm x,t)=0); &math(\frac{1}{\mu_0}\ROT\bm B(\bm x,t)-\varepsilon_0\frac{\PD\bm E(\bm x,t)}{\PD t}=\bm i_e+\bm i_d+\bm i_m); &math(\varepsilon_0\DIV\bm E(\bm x,t)=\rho_e+\rho_d); を得る。さらに、&math(\rho_d,\bm i_d,\bm i_m); に具体的な表式を代入すれば第3、4式は、 &math(\ROT\left\{\frac{1}{\mu_0}\bm B(\bm x,t)-\ROT\bm M(\bm x,t)\right\}-\frac{\PD}{\PD t}\left\{\varepsilon_0\bm E(\bm x,t)+\bm P(\bm x,t)\right\}=\bm i_e); &math(\DIV\{\varepsilon_0\bm E(\bm x,t)+\bm P(\bm x,t)\}=\rho_e); と変形できる。 そこで、 電即密度:&math(\bm D(\bm x,t)=\varepsilon_0\bm E(\bm x,t)+\bm P(\bm x,t)); 磁場の強さ:&math(\bm H(\bm x,t)=\frac{1}{\mu_0}\bm B(\bm x,t)-\ROT\bm M(\bm x,t)); と書けば、物質中での Maxwell 方程式として次式を得る。 &math(\ROT\bm E(\bm x,t)+\frac{\PD\bm B(\bm x,t)}{\PD t}=\bm o); &math(\DIV\bm B(\bm x,t)=0); &math(\ROT\bm H(\bm x,t)-\frac{\PD\bm D(\bm x,t)}{\PD t}=\bm i_e); &math(\DIV\bm D(\bm x,t)=\rho_e); 通常、&math(\bm i_e, \rho_e); は単に &math(\bm i,\rho); と書かれる。 この形は、真空の Maxwell 方程式と非常に似ているものの、実際には大きく異なる。 - &math(\bm E, \bm B); の定義は真空の時と同じ。 - &math(\bm i, \rho); の定義は真空の時とは異なる。 - 分極による影響は &math(\bm D); に押し込められている。 -- &math(\bm D); は見た目の電荷量(真電荷 &math(\rho_e);)から予想される電場のようなもの。 -- 実際の電場 &math(\bm E); は &math(\rho_d); のせいで &math(\bm E\ne\bm D/\varepsilon_0); - 磁化電流による影響は &math(\bm H); に押し込められている。 -- &math(\bm H); は見た目の電流量(伝導電流 &math(\bm i_e);)から予想される磁束密度のようなもの。 -- 実際の磁束密度 &math(\bm B); は &math(\bm i_d,\bm i_m); などのため、&math(\bm B\ne\mu_0\bm H); とは異なる値になる。 一般には &math(\bm E(\bm x,t)); と &math(\bm D(\bm x,t));、&math(\bm B(\bm x,t)); と &math(\bm H(\bm x,t)); は完全に独立な物理量で、大きさはもちろん方向も異なる。 したがって、&math(\rho_e); や &math(\bm i_e); が与えられただけでは変数が多すぎて解を求められない。 この方程式を解くには Maxwell 方程式に加えて、 外場に対して物質の分極や磁化がどのように応答するかの知識が必要である。 * 素直な系では [#m1f387ba] 実験によると、強強誘電体や強磁性体、あるいは非等方性物質を除き、 微弱な電界、磁界の元で次のような簡単な関係が成り立つことが認められる。 電即密度:&math(\bm D(\bm x,t)=\varepsilon\bm E(\bm x,t)); 磁場の強さ:&math(\bm H(\bm x,t)=\frac{1}{\mu}\bm B(\bm x,t)); &math(\varepsilon,\mu); は単なる比例定数であるから、このとき &math(\bm D//\bm E);、&math(\bm H//\bm B); である。 特に真空では &math(\varepsilon=\varepsilon_0);、&math(\mu=\mu_0); であるから、 &math(\varepsilon=\varepsilon^*\varepsilon_0); &math(\mu=\mu^*\mu_0); のように、無次元量である比誘電率 &math(\varepsilon^*);、比透磁率 &math(\mu^*); を抜き出すこともしばしば行われる。 上で示した &math(\bm D,\bm E); および &math(\bm H,\bm B); の関係は、物性論から得られる物であり、電磁気学からの帰結ではないことに注意せよ。 比誘電率 &math(\varepsilon^*); は物質により &math(1\sim 10); 程度で1より大きな値を取る。一般には外場の周波数や強度にも依存する。 比透磁率 &math(\mu^*); は物質により1より大きくも、小さくもなる。常磁性体では &math(\mu^*-1= 10^{-6}\sim 10^{-4}); である。反磁性体では &math(\mu^*=10^{-5}); 程度まで小さくなる。
Counter: 22219 (from 2010/06/03),
today: 1,
yesterday: 0