スピントロニクス理論の基礎/8-11 のバックアップソース(No.3)
更新[[[前の章へ]>スピントロニクス理論の基礎/8-10]] <<<< [[スピントロニクス理論の基礎]](目次) >>>> [[[次の章へ]>スピントロニクス理論の基礎/9-1A]] * 8-11 不純物散乱のもとでの lesser Green 関数 [#f9ddef59] (8.111) を波数表示に直すと、 (8.145), (8.114) より &math( &g_{\bm k,\bm k',\omega}^<=\delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^< +\sum_{\bm q}\big[ g_{0\bm k,\bm k',\omega}^rv_i(\bm q)g_{\bm k+\bm q,\bm k',\omega}^< +g_{0\bm k,\bm k',\omega}^<v_i(\bm q)g_{\bm k+\bm q,\bm k',\omega}^a \big] \\&= \delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^<+\\ &\sum_{\bm q}\big[ g_{0\bm k,\bm k',\omega}^r v_i(\bm q) \big( \delta_{\bm k+\bm q,\bm k'}g_{0\bm k+\bm q,\bm k',\omega}^< +\sum_{\bm q'}\big[ g_{0\bm k+\bm q,\bm k',\omega}^rv_i(\bm q')g_{\bm k+\bm q+\bm q',\bm k',\omega}^< +g_{0\bm k+\bm q,\bm k',\omega}^<v_i(\bm q')g_{\bm k+\bm q+\bm q',\bm k',\omega}^a \big]\big)\\ &\hspace{4mm} +g_{0\bm k,\bm k',\omega}^< v_i(\bm q) \big( \delta_{\bm k+\bm q,\bm k'}g_{0\bm k+\bm q,\bm k',\omega}^a +\sum_{\bm q'} g_{0\bm k+\bm q,\bm k',\omega}^av_i(\bm q')g_{\bm k+\bm q+\bm q',\bm k',\omega}^a \big) \big] \\&= \delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^<+ \sum_{\bm q}\Big[ g_{0\bm k,\bm k',\omega}^r v_i(\bm q) \delta_{\bm k+\bm q,\bm k'}g_{0\bm k+\bm q,\bm k',\omega}^< +g_{0\bm k,\bm k',\omega}^< v_i(\bm q) \delta_{\bm k+\bm q,\bm k'}g_{0\bm k+\bm q,\bm k',\omega}^a\Big]+\\ &\sum_{\bm q,\bm q'}\Big[ g_{0\bm k,\bm k',\omega}^r v_i(\bm q) g_{0\bm k+\bm q,\bm k',\omega}^rv_i(\bm q')g_{\bm k+\bm q+\bm q',\bm k',\omega}^< + g_{0\bm k,\bm k',\omega}^r v_i(\bm q) g_{0\bm k+\bm q,\bm k',\omega}^<v_i(\bm q')g_{\bm k+\bm q+\bm q',\bm k',\omega}^a\\ &\hspace{4mm} +g_{0\bm k,\bm k',\omega}^< v_i(\bm q) g_{0\bm k+\bm q,\bm k',\omega}^av_i(\bm q')g_{\bm k+\bm q+\bm q',\bm k',\omega}^a \Big] \\&= \delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^<+ \sum_{\bm q}\langle v_i(\bm q) \rangle_i\delta_{\bm k+\bm q,\bm k'}\Big[ g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^< +g_{0\bm k,\bm k',\omega}^< g_{0\bm k+\bm q,\bm k',\omega}^a\Big]+\\ &\sum_{\bm q,\bm q'}\langle v_i(\bm q)v_i(\bm q') \rangle_i\Big[ g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^rg_{\bm k+\bm q+\bm q',\bm k',\omega}^< + g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^<g_{\bm k+\bm q+\bm q',\bm k',\omega}^a +g_{0\bm k,\bm k',\omega}^< g_{0\bm k+\bm q,\bm k',\omega}^ag_{\bm k+\bm q+\bm q',\bm k',\omega}^a \Big] \\&= \delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^<+ \sum_{\bm q}0\cdot\delta_{\bm k+\bm q,\bm k'}\Big[ g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^< +g_{0\bm k,\bm k',\omega}^< g_{0\bm k+\bm q,\bm k',\omega}^a\Big]+\\ &\frac{n_iv_i^2}{N}\sum_{\bm q,\bm q'}\delta_{\bm q+\bm q',\bm 0}\Big[ g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^rg_{\bm k+\bm q+\bm q',\bm k',\omega}^< + g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^<g_{\bm k+\bm q+\bm q',\bm k',\omega}^a +g_{0\bm k,\bm k',\omega}^< g_{0\bm k+\bm q,\bm k',\omega}^ag_{\bm k+\bm q+\bm q',\bm k',\omega}^a \Big] \\&= \delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^<+ \frac{n_iv_i^2}{N}\sum_{\bm q}\Big[ g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^rg_{\bm k,\bm k',\omega}^< + g_{0\bm k,\bm k',\omega}^r g_{0\bm k+\bm q,\bm k',\omega}^<g_{\bm k,\bm k',\omega}^a +g_{0\bm k,\bm k',\omega}^< g_{0\bm k+\bm q,\bm k',\omega}^ag_{\bm k,\bm k',\omega}^a \Big] \\&= \delta_{\bm k,\bm k'}g_{0\bm k,\bm k',\omega}^<+ \Big[ g_{0\bm k,\bm k',\omega}^r \Sigma^r g_{\bm k,\bm k',\omega}^< +g_{0\bm k,\bm k',\omega}^r \Sigma^< g_{\bm k,\bm k',\omega}^a +g_{0\bm k,\bm k',\omega}^< \Sigma^a g_{\bm k,\bm k',\omega}^a \Big] ); 繰り返し代入すると &math(g_{\bm k,\bm k',\omega}\propto \delta_{\bm k,\bm k'}); が得られることから、 (8.124) &math( &g_{\bm k,\omega}^< = g_{0\bm k,\bm k',\omega}^<+ \Big[ g_{0\bm k,\omega}^r \Sigma^r g_{\bm k,\omega}^< +g_{0\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +g_{0\bm k,\omega}^< \Sigma^a g_{\bm k,\omega}^a \Big] ); を得る。 (8.148) &math( \Sigma^\alpha(\hbar\omega)\equiv n_iv_i^2\frac{1}{N}\sum_{\bm k}g_{0\bm k,\omega}^\alpha ); (8-10.9) より (8.149) &math( \frac{g_{\bm k,\omega}^r-g_{0\bm k,\omega}^r}{g_{\bm k,\omega}^r} = \Sigma^r g_{0\bm k,\omega}^r ); &math( \frac{g_{\bm k,\omega}^a-g_{0\bm k,\omega}^a}{g_{0\bm k,\omega}^a} = \Sigma^a g_{\bm k,\omega}^a ); (8.150) 式を整理すると、 &math( &g_{\bm k,\omega}^< = g_{0\bm k,\omega}^<+ \Big[ g_{0\bm k,\omega}^r \Sigma^r g_{\bm k,\omega}^< +g_{0\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +g_{0\bm k,\omega}^< \Sigma^a g_{\bm k,\omega}^a \Big] \\&= g_{0\bm k,\omega}^<+ \Big[ \frac{g_{\bm k,\omega}^r-g_{0\bm k,\omega}^r}{g_{\bm k,\omega}^r} g_{\bm k,\omega}^< +g_{0\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +\frac{g_{\bm k,\omega}^a-g_{0\bm k,\omega}^a}{g_{0\bm k,\omega}^a} g_{0\bm k,\omega}^< \Big] ); &math( \frac{g_{0\bm k,\omega}^r}{g_{\bm k,\omega}^r}g_{\bm k,\omega}^<= g_{0\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +\frac{g_{\bm k,\omega}^a}{g_{0\bm k,\omega}^a} g_{0\bm k,\omega}^< ); &math( &g_{\bm k,\omega}^<= g_{\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +\frac{g_{\bm k,\omega}^r}{g_{0\bm k,\omega}^r}\frac{g_{\bm k,\omega}^a}{g_{0\bm k,\omega}^a} g_{0\bm k,\omega}^< \\&= g_{\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +\frac{\hbar\omega-\varepsilon_{\bm k}+i0}{\hbar\omega-\varepsilon_{\bm k}-\Sigma^r} \frac{\hbar\omega-\varepsilon_{\bm k}-i0}{\hbar\omega-\varepsilon_{\bm k}-\Sigma^a} 2\pi i f(\hbar\omega)\delta(\hbar\omega-\varepsilon_{\bm k}) \\&= g_{\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a +2\pi i f(\hbar\omega) \frac{(\hbar\omega-\varepsilon_{\bm k})^2\delta(\hbar\omega-\varepsilon_{\bm k})} {(\hbar\omega-\varepsilon_{\bm k}-\Sigma^r)(\hbar\omega-\varepsilon_{\bm k}-\Sigma^a)} \\&= g_{\bm k,\omega}^r \Sigma^< g_{\bm k,\omega}^a = \frac{\Sigma^<} {(\hbar\omega-\varepsilon_{\bm k}-\Sigma^r)(\hbar\omega-\varepsilon_{\bm k}-\Sigma^a)} ); ここで、(8.148), (8.91) より &math( &\Sigma^< = \frac{n_iv_i^2}{N}\sum_{\bm k} f_{\bm k}(\hbar\omega)(g_{0\bm k,\omega}^a-g_{0\bm k,\omega}^r) \\&= f_{\bm k}(\hbar\omega) (\Sigma^a-\Sigma^r) \\&= f_{\bm k}(\hbar\omega) \left( \frac{i\hbar}{\tau} \right) ); したがって、 &math( &g_{\bm k,\omega}^<= \frac{f_{\bm k}(\hbar\omega)(\Sigma^a-\Sigma^r)} {(\hbar\omega-\varepsilon_{\bm k}-\Sigma^r)(\hbar\omega-\varepsilon_{\bm k}-\Sigma^a)} \\&=f_{\bm k}(\hbar\omega)\left[ \frac{1}{\hbar\omega-\varepsilon_{\bm k}-\Sigma^a} -\frac{1}{\hbar\omega-\varepsilon_{\bm k}-\Sigma^r} \right] \\&=f_{\bm k}(\hbar\omega)\left[g_{\bm k,\omega}^a-g_{\bm k,\omega}^r\right] \\&=2\pi i f_{\bm k}(\hbar\omega)\delta_\Sigma(\hbar\omega-\varepsilon_{\bm k}) ); &math(\delta_\Sigma(\ )); はフェルミレベルのぼけによりなまったδ関数である。 * 質問・コメント [#q187aaf8] #article_kcaptcha
Counter: 4311 (from 2010/06/03),
today: 1,
yesterday: 0