4章B-行列式の表式とその性質 のバックアップ(No.1)

更新


線形代数I

行列式の3つの性質とその表式

ここまでで (1) 交代性、(2) 多重線形性、(3) 単位行列に対する値が1、の3つの 性質を持つものとして行列式を定義すると、その形は

\det A = \sum_{(i_1, i_2, \dots, i_n)} \text{sgn} \left( \begin{array}{cccc} 1&2&\dots&n \\ i_1&i_2&\dots&i_n \end{array} \right) a_{i_11}a_{i_22}\dots a_{i_nn}

でなければならないことが示された。

つまり、

(\text{3つの性質を持つ}) \to (\text{行列式は上記の形を持つ})

が証明されたことになる。以降ではこの逆、

(\text{行列式は上記の形を持つ}) \to (\text{3つの性質を持つ})

が成り立つことを示す。

これにより3つの性質により行列式を定義しても、 上記形式により行列式を定義しても、両者は同じことであると分かる。

教科書によってはこの式を行列式の定義とし、その性質として (1)〜(3) を説明する 方針を採るものもある。


Counter: 12397 (from 2010/06/03), today: 2, yesterday: 0