ベリー位相・ベリー接続・ベリー曲率 のバックアップソース(No.1)
更新- バックアップ一覧
- 差分 を表示
- 現在との差分 を表示
- バックアップ を表示
- 量子力学/ベリー位相・ベリー接続・ベリー曲率 へ行く。
[[量子力学Ⅰ]] * 目次 [#m5a7c0be] #contents * Berry 位相・Berry 接続・Berry 曲率 [#ubb06455] ハミルトニアンが何らかのパラメータ $\bm q$ を含んでいるとする。その時の固有値と波動関数とを次のように書く。$(n)$ は $n$ 番目のバンド、つまり小さいほうから $n$ 番目の固有値であることを表す。 $$ \hat H(\bm q)\,|\psi_{\bm q}^{(n)}\rangle=\varepsilon_{\bm q}^{(n)}\,|\psi_{\bm q}^{(n)}\rangle $$ $|\psi_{\bm q}^{(n)}\rangle$ の周囲で $\bm q$ を少し変えたときに波動関数がどう変わるか調べてみよう。 $$ \hat H(\bm q+\delta \bm q)\,|\psi_{\bm q}^{(n)}+\delta \psi_{\bm q}^{(n)}\rangle=(\varepsilon_{\bm q}^{(n)}+\delta\varepsilon_{\bm q}^{(n)})\,|\psi_{\bm q}^{(n)}+\delta\psi_{\bm q}^{(n)}\rangle $$ これを一次まででばらしてみる、 $$\hat H(\bm q+\delta \bm q)=\hat H(\bm q)+\underbrace{\bm\nabla_{\bm q}\hat H(\bm q)\cdot \delta\bm q}_{\text{摂動項}}$$ $$ \delta\varepsilon_{\bm q}^{(n)}=\bm\nabla_{\bm q}\varepsilon_{\bm q}^{(n)}\cdot\delta\bm q $$ を使って、 $$ \big(\hat H(\bm q)+\bm\nabla_{\bm q}\hat H(\bm q)\cdot \delta\bm q\big)\, |\psi_{\bm q}^{(n)}+\delta \psi_{\bm q}^{(n)}\rangle=(\varepsilon_{\bm q}^{(n)}+\bm\nabla_{\bm q}\varepsilon_{\bm q}^{(n)}\cdot\delta\bm q)\,|\psi_{\bm q}^{(n)}+\delta\psi_{\bm q}^{(n)}\rangle $$ $$ \hat H(\bm q)\,|\delta \psi_{\bm q}^{(n)}\rangle {}+\bm\nabla_{\bm q}\hat H(\bm q)\cdot \delta\bm q\, |\psi_{\bm q}^{(n)}\rangle =\varepsilon_{\bm q}^{(n)}\,|\delta\psi_{\bm q}^{(n)}\rangle+ \bm\nabla_{\bm q}\varepsilon_{\bm q}^{(n)}\cdot\delta\bm q\,|\psi_{\bm q}^{(n)}\rangle $$ 左から $\langle\psi_{\bm q}^{(n')}|$ をかけると、 $$ (\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)})\,\langle\psi_{\bm q}^{(n')}|\delta \psi_{\bm q}^{(n)}\rangle=-\langle\psi_{\bm q}^{(n')}| \bm\nabla_{\bm q}\hat H(\bm q)\cdot \delta\bm q\, |\psi_{\bm q}^{(n)}\rangle+ \bm\nabla_{\bm q}\varepsilon_{\bm q}^{(n)}\cdot\delta\bm q\,\delta_{n'n} $$ $n'=n$ では $$ \langle\psi_{\bm q}^{(n)}|\bm\nabla_{\bm q}\hat H(\bm q)\,|\psi_{\bm q}^{(n)}\rangle= \bm\nabla_{\bm q}\varepsilon_{\bm q}^{(n)} $$ $n'\ne n$ では $$ \langle\psi_{\bm q}^{(n')}|\delta \psi_{\bm q}^{(n)}\rangle= \langle\psi_{\bm q}^{(n')}|\bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle\cdot \delta\bm q=- \frac{\langle\psi_{\bm q}^{(n')}| \bm\nabla_{\bm q}\hat H(\bm q)\, |\psi_{\bm q}^{(n)}\rangle}{\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)}}\cdot \delta\bm q $$ すなわち一次摂動でおなじみの形、 $$ \langle\psi_{\bm q}^{(n')}|\bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle=- \frac{\langle\psi_{\bm q}^{(n')}| \bm\nabla_{\bm q}\hat H(\bm q)\, |\psi_{\bm q}^{(n)}\rangle}{\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)}} $$ が出る。これで $\bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle$ を $|\psi_{\bm q}^{(n')}\rangle$ で展開した際の係数が $n'=n$ を除き求まったので、 $$ \bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle= \underbrace{\langle\psi_{\bm q}^{(n)}|\bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle}_{=-i\bm A}\ |\psi_{\bm q}^{(n)}\rangle+ \sum_{n'\ne n}- \frac{\langle\psi_{\bm q}^{(n')}| \bm\nabla_{\bm q}\hat H(\bm q)\, |\psi_{\bm q}^{(n)}\rangle}{\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)}}\ |\psi_{\bm q}^{(n')}\rangle $$ と書ける。$n'=n$ の成分の係数はわからないので、形式的に $\langle\psi_{\bm q}^{(n)}|\bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle$ と書いている。上のように定義した $$ \bm A=i\langle\psi_{\bm q}^{(n)}|\bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle $$ は Berry 接続と呼ばれる実ベクトルになる。 なぜ実数になるかというと、 $$ \begin{aligned} |\psi_{\bm q+\delta\bm q}^{(n)}\rangle &=|\psi_{\bm q}^{(n)}\rangle+|\delta\psi_{\bm q}^{(n)}\rangle\\ &=(1+\delta_n)|\psi_{\bm q}^{(n)}\rangle+\sum_{n'\ne n} \delta_{n'}|\psi_{\bm q}^{(n')}\rangle \end{aligned} $$ と書けるとき、$|\psi_{\bm q+\delta\bm q}^{(n)}\rangle$ が規格化されている条件は、 $$ \langle\psi_{\bm q+\delta\bm q}^{(n)}|\psi_{\bm q+\delta\bm q}^{(n)}\rangle=(1+\delta_n^*)(1+\delta_n)+\sum_{n'\ne n} |\delta_{n'}|^2=1 $$ であり、2次の項を落とすと、 $$ \delta_n^*+\delta_n=0 $$ が得られる。これは $\delta_n$ が純虚数であることを表し、すなわち $\bm A$ が実数であることを表す。 ((もっと簡単に書くと、あるベクトル $\bm v$ がノルムを変えず変化して $\bm v+\delta\bm v$ となったとすると、$$\begin{aligned}&\|\bm v\|^2=\|\bm v+\delta\bm v\|^2=\\&\|\bm v\|^2+2\,\text{Re}\,(\bm v,\delta\bm v)+\|\delta\bm v\|^2\end{aligned}$$2次の微少量を無視すると$$\,\text{Re}\,(\bm v,\delta\bm v)=0$$すなわち、$\delta\bm v$ の $\bm v$ 成分は純虚数でなければならない。ということ。)) $\delta_n\ll 1$ のとき、 $$ 1+\delta_n\sim e^{\delta_n} $$ つまり、 $$ 1-i\bm A\cdot\delta\bm q\sim e^{-i\bm A\cdot\delta\bm q} $$ であるから、$\bm q\to\bm q+\delta\bm q$ の変化により、$|\psi_{\bm q}^{(n)}\rangle$ 成分は大きさを変えず位相のみ $-\delta\gamma=-\bm A\cdot\delta\bm q$ だけ回転するのである。(とりあえずほかの成分のことは気にしない) $$ |\psi_{\bm q+\delta\bm q}^{(n)}\rangle =\underbrace{e^{-i\bm A\cdot\delta\bm q}\rule[-15pt]{0pt}{0pt}}_{\text{位相変化}}\,|\psi_{\bm q}^{(n)}\rangle+\underbrace{\sum_{n'\ne n} \delta_{n'}|\psi_{\bm q}^{(n')}\rangle}_{\text{気にしない}} $$ そこでこれを積分した値を考えると $\bm q_A$ から $\bm q_B$ までの変化で位相は、$e^{-i\gamma}$ ただし $$ \gamma=\int_{\bm q_A}^{\bm q_B}d\gamma=\int_{\bm q_A}^{\bm q_B}\bm A\cdot d\bm q $$ だけ変化する。 始点と終点が等しいとき($\bm q_A=\bm q_B$)、終点で他の成分は消えて $|\psi_{\bm q_A}^{(n)}\rangle$ 成分のみが残り、$|\psi_{\bm q_A}^{(n)}\rangle$ と $|\psi_{\bm q_B}^{(n)}\rangle$ との違いは位相のみになる。 通常の物質(後で条件について議論する)ではこの位相差はゼロになるが、上でも見たようにグラフェンの $K$ 点回りなど特殊な条件下で有限の値となる場合がある。 周回して残る位相を Berry 位相と呼ぶ。 $$ \gamma=\oint_C \bm A\cdot d\bm q $$ この式は電磁気学で出てくる $$ (\text{磁束})=\oint_C (\text{ベクトルポテンシャル})\cdot d\bm r $$ とクリソツだなあ、などと思いつつ、ストークスの定理を使って、 $$ \begin{aligned} \gamma&=\oint_C \bm A\cdot d\bm q\\ &=\int_S(\underbrace{\bm\nabla\times A}_{=\,\bm\Omega})\cdot d\bm S\\ &=\int_S\bm\Omega\cdot d\bm S\\ \end{aligned} $$ と書き直すと、ここに出てくる Berry 曲率 $$\Omega=\bm\nabla\times A$$ は電磁気学における磁束密度に相当する量となる。 |ベリー曲率 $\bm \Omega$|磁束密度 $\bm B$| |ベリー接続 $\bm A$|ベクトルポテンシャル $\bm A$| |ベリー位相 $\gamma$|磁束 $N$| 具体的な形としては例えば、 $$ \begin{aligned} \Omega_z &=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}\\ &=i\frac{\partial}{\partial x}\Big(\langle\psi_{\bm q}^{(n)}|\frac{\partial}{\partial y}|\psi_{\bm q}^{(n)}\rangle\Big)- i\frac{\partial}{\partial y}\Big(\langle\psi_{\bm q}^{(n)}|\frac{\partial}{\partial x}|\psi_{\bm q}^{(n)}\rangle\Big)\\ &=i\langle\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial x}|\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial y}\rangle+ \cancel{i\langle\psi_{\bm q}^{(n)}|\frac{\partial^2}{\partial x\partial y}|\psi_{\bm q}^{(n)}\rangle}- \cancel{i\langle\psi_{\bm q}^{(n)}|\frac{\partial^2}{\partial y\partial x}|\psi_{\bm q}^{(n)}\rangle}- i\langle\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial y}|\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial x}\rangle\\ &=-2\,\text{Im}\,\langle\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial x}|\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial y}\rangle\\ \end{aligned} $$ などとなる。 $$ \langle\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial x}|\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial y}\rangle= \sum_{n'} \langle\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial x}|\psi_{\bm q}^{(n')}\rangle \langle\psi_{\bm q}^{(n')}|\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial y}\rangle $$ の形に上で求めた $$ \bm\nabla_{\bm q}|\psi_{\bm q}^{(n)}\rangle= {}-i\bm A\ |\psi_{\bm q}^{(n)}\rangle+ \sum_{n'\ne n}- \frac{\langle\psi_{\bm q}^{(n')}| \bm\nabla_{\bm q}\hat H(\bm q)\,|\psi_{\bm q}^{(n)}\rangle}{\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)}}\ |\psi_{\bm q}^{(n')}\rangle $$ を入れると、 $$ \langle\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial x}|\tfrac{\partial\psi_{\bm q}^{(n)}}{\partial y}\rangle= \underbrace{A_xA_y}_{\text{実数}}+ \sum_{n'\ne n} \frac{\langle\psi_{\bm q}^{(n)}| \tfrac{\partial}{\partial x}\hat H(\bm q)\,|\psi_{\bm q}^{(n')}\rangle\langle\psi_{\bm q}^{(n')}| \tfrac{\partial}{\partial y}\hat H(\bm q)\,|\psi_{\bm q}^{(n)}\rangle}{\big(\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)}\big)^2} $$ より、 $$ \Omega_z=-2\,\text{Im}\,\sum_{n'\ne n} \frac{\langle\psi_{\bm q}^{(n)}| \tfrac{\partial}{\partial x}\hat H(\bm q)\,|\psi_{\bm q}^{(n')}\rangle\langle\psi_{\bm q}^{(n')}| \tfrac{\partial}{\partial y}\hat H(\bm q)\,|\psi_{\bm q}^{(n)}\rangle}{\big(\varepsilon_{\bm q}^{(n')}-\varepsilon_{\bm q}^{(n)}\big)^2} $$ を得る。 で、なぜ Berry 位相が重要かというと、 $\bm q$ として $\bm k$ を取るとき、 $$ \bm\nabla_{\bm k} \hat H $$ は群速度 $v_g=\frac{\partial\omega}{\partial k}=\frac1\hbar\frac{\partial E}{\partial k}$ に相当する演算子 $$ \hat\bm v_g=\frac{1}{\hbar}\bm\nabla_{\bm k}\hat H $$ に $\hbar$ をかけたものとなる。 逆に、群速度と関連する「電流」などを求めようとすると、その過程で Berry 位相が出てくるため学んでおく必要がある。ということなのだと思う。 * Zak 位相 [#cc464553] Berry 位相の線積分は始点と終点が同じ周回積分だったが、ある $\bm k$ から隣のブリルアンゾーンの対応する $\bm k+\bm G$ まで Berry 接続を線積分した値は Zak 位相と呼ばれる。$\bm k$ と $\bm k+\bm G$ は物理的には同じ状態であるから、両者に対する波動関数は位相以外同一のものとなるが、その位相差が Zak 位相である。 実は Berry 曲率は時間反転対称性と空間反転対称性の両方を持つ「普通の」バンド内では常にゼロになってしまうため、Berry 位相はゼロになることが多いのに対して、そのような場合にも Berry 接続が有限になり、Zak 位相が有限となる場合が生じる。 この議論は磁場がない空間でもベクトルポテンシャルは有限になっており、その空間での波動関数に影響を及ぼしうるというアハラノフ=ボーム効果(AB 効果)のアナロジーとして理解できる。
Counter: 14024 (from 2010/06/03),
today: 1,
yesterday: 0