エーレンフェストの定理/メモ のバックアップ差分(No.1)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
 &math(
\frac{d}{dt}\langle x\rangle
&=\frac{1}{i\hbar}\iiint \psi^*\Big[x\hat H-\hat Hx\Big]\psi\,d\bm r\\
&=\frac{1}{i\hbar}\iiint \psi^*\Big[x\Big(\frac{1}{2m}\hat p^2+\cancel{V}\Big)
-\Big(\frac{1}{2m}\hat p^2+\cancel{V}\Big)x\Big]\psi\,d\bm r\\
&=\frac{1}{i\hbar}\iiint\frac{1}{2m}\psi^*\Big(x\hat p^2-\hat p^2x\Big)\psi\,d\bm r
);

ここで、交換関係 &math(x\hat p_x-\hat p_xx=i\hbar); および、&math(x\hat p_y-\hat p_yx=x\hat p_z-\hat p_zx=0); を用いると、

 &math(
\hat p_x^2x&=\hat p_x(x\hat p_x-i\hbar)\\
&=\hat p_xx\hat p_x-i\hbar\hat p_x\\
&=(x\hat p_x-i\hbar)\hat p_x-i\hbar\hat p_x\\
&=x\hat p_x^2-2i\hbar\hat p_x
);

より、

 &math(x\hat p^2-\hat p^2x&=x(\hat p_x^2+\hat p_y^2+\hat p_z^2)-(\hat p_x^2+\hat p_y^2+\hat p_z^2)x\\
&=2i\hbar\hat p_x);

であるから、

 &math(
\frac{d}{dt}\langle x\rangle
&=\frac{1}{\cancel{i\hbar}}\iiint\frac{1}{\cancel 2m}\psi^*\Big(\cancel 2\cancel{i\hbar}\hat p\Big)\psi\,d\bm r\\
&=\frac{1}{m}\iiint\psi^*\hat p\psi\,d\bm r\\
&=\frac{\left\langle p\right\rangle}{m}
);

を得る。一方、運動量の時間変化は、

 &math(
\frac{d}{dt}\langle p_x\rangle
&=\frac{1}{i\hbar}\iiint\psi^*\left[\hat p_x\left(\frac{1}{2m}\hat p^2+V\right)
-\left(\frac{1}{2m}\hat p^2+V\right)\hat p_x\right]\psi\,d\bm r\\
&=\frac{1}{i\hbar}\iiint\psi^*\Big(\frac{1}{2m}(\hat p_x\hat p^2-\hat p^2\hat p_x)+(\hat p_xV-V\hat p_x)\Big)\psi\,d\bm r
);

ここで、&math(\hat p_x); と &math(\hat p^2); は交換するから、
&math(\hat p_x\hat p^2-\hat p^2\hat p_x=0);。一方、

 &math(
\hat p_xV\psi&=\frac{\hbar}{i}\frac{\PD}{\PD x}(V\psi)\\
&=\frac{\hbar}{i}\frac{\PD V}{\PD x}\psi+V\frac{\hbar}{i}\frac{\PD}{\PD x}\psi\\
&=\Big(\frac{\hbar}{i}\frac{\PD V}{\PD x}+V\hat p_x\Big)\psi\\
);

より、

 &math(
\frac{d}{dt}\langle p_x\rangle
&=\frac{1}{i\cancel\hbar}\iiint\psi^*\Big(\frac{\cancel\hbar}{i}\frac{\PD V}{\PD x}\Big)\psi\,d\bm r\\
&=-\left\langle\frac{\PD V}{\PD x}\right\rangle
);

となる。


Counter: 4304 (from 2010/06/03), today: 2, yesterday: 0