球座標における微分演算子/メモ の変更点
更新- 追加された行はこの色です。
- 削除された行はこの色です。
- 量子力学Ⅰ/球座標における微分演算子/メモ へ行く。
- 量子力学Ⅰ/球座標における微分演算子/メモ の差分を削除
* 目次 [#n498e6ef] #contents * 演習:偏微分の計算 [#j884fda6] ** 解答 [#f8689b48] (1) &math(r^2=x^2+y^2+z^2); より、&math(2r\frac{\PD r}{\PD x}=2x); などが得られて、 &math( \begin{cases} \displaystyle\frac{\PD r}{\PD x}=\frac{x}{r}=\sin\theta\cos\phi\\[4mm] \displaystyle\frac{\PD r}{\PD y}=\frac{y}{r}=\sin\theta\sin\phi\\[4mm] \displaystyle\frac{\PD r}{\PD z}=\frac{z}{r}=\cos\theta\\ \end{cases} ); (2) &math(\tan^2\theta=\frac{x^2+y^2}{z^2}); より、 &math(\frac{1}{\cos^2\theta}\frac{\PD \theta}{\PD y}=\frac{2x}{z^2}); &math(\frac{\not\!2\tan\theta}{\cos^2\theta}\frac{\PD \theta}{\PD x}=\frac{\not\! 2x}{z^2});、 &math(\frac{\not\!2\tan\theta}{\cos^2\theta}\frac{\PD \theta}{\PD y}=\frac{\not\! 2y}{z^2});、 &math(\frac{\not\!2\tan\theta}{\cos^2\theta}\frac{\PD \theta}{\PD z}=-\not\!2\frac{x^2+y^2}{z^3});、 &math( \begin{cases} \displaystyle\frac{\PD \theta}{\PD x}=\frac{r\sin\theta\cos\phi}{r^2\cos^2\theta}\frac{\cos^2\theta}{\tan\theta}=\frac{1}{r}\cos\theta\cos\phi\\[4mm] \displaystyle\frac{\PD \theta}{\PD y}=\frac{r\sin\theta\sin\phi}{r^2\cos^2\theta}\frac{\cos^2\theta}{\tan\theta}=\frac{1}{r}\cos\theta\sin\phi\\[4mm] \displaystyle\frac{\PD \theta}{\PD z}=-\frac{r^2\sin^2\theta}{r^3\cos^3\theta}\frac{\cos^2\theta}{\tan\theta}=-\frac{1}{r}\sin\theta \end{cases} ); (3) &math(\tan\phi=\frac{y}{x}); より、 &math(\frac{1}{\cos^2\phi}\frac{\PD\phi}{\PD x}=-\frac{y}{x^2});、 &math(\frac{1}{\cos^2\phi}\frac{\PD\phi}{\PD y}=\frac{1}{x});、 &math(\frac{1}{\cos^2\phi}\frac{\PD\phi}{\PD z}=0); であるから、 &math( \begin{cases} \displaystyle\frac{\PD \phi}{\PD x}=-\frac{r\sin\theta\sin\phi}{r^2\sin^2\theta\cos^2\phi}\cos^2\phi=-\frac{\sin\phi}{r\sin\theta}\\[4mm] \displaystyle\frac{\PD \phi}{\PD y}=\frac{1}{r\sin\theta\cos\phi}\cos^2\phi=\frac{\cos\phi}{r\sin\theta}\\[4mm] \displaystyle\frac{\PD \phi}{\PD z}=0 \end{cases} ); * 球座標のラプラシアン [#o621468a] &math( \frac{\PD^2}{\PD x^2} &=\Big(\sin\theta\cos\phi \frac{\PD}{\PD r} +\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta} -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)^2\\ &=\sin\theta\cos\phi \frac{\PD}{\PD r}\Big(\sin\theta\cos\phi \frac{\PD}{\PD r} +\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta} -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)\\ &\ \ \ +\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta} \Big(\sin\theta\cos\phi \frac{\PD}{\PD r} +\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta} -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)\\ &\ \ \ -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi} \Big(\sin\theta\cos\phi \frac{\PD}{\PD r} +\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta} -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)\\ &=\sin^2\theta\cos^2\phi \frac{\PD^2}{\PD r^2} -\frac{\sin\theta\cos\theta\cos^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{\sin\theta\cos\theta\cos^2\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} +\frac{\sin\phi\cos\phi}{r^2} \frac{\PD}{\PD \phi} -\frac{\sin\phi\cos\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\theta\cos^2\phi}{r} \frac{\PD}{\PD r} +\frac{\sin\theta\cos\theta\cos^2\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} +\frac{-\sin\theta\cos\theta\cos^2\phi}{r^2}\frac{\PD}{\PD \theta} +\frac{\cos^2\theta\cos^2\phi}{r^2} \frac{\PD^2}{\PD \theta^2}\\ &\hspace{9cm}+\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} -\frac{\cos\theta\sin\phi\cos\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi} \\ &\ \ \ +\frac{\sin^2\phi}{r} \frac{\PD}{\PD r} -\frac{\sin\phi\cos\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \phi} +\frac{\cos\theta\sin^2\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta} -\frac{\cos\theta\sin\phi\cos\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi} +\frac{\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{\sin^2\phi}{r^2\sin^2\theta} \frac{\PD^2}{\PD \phi^2}\\ &=\sin^2\theta\cos^2\phi \frac{\PD^2}{\PD r^2} -\frac{\sin\theta\cos\theta\cos^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{2\sin\theta\cos\theta\cos^2\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} +\frac{\sin\phi\cos\phi}{r^2} \frac{\PD}{\PD \phi} -\frac{2\sin\phi\cos\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\theta\cos^2\phi}{r} \frac{\PD}{\PD r} +\frac{-\sin\theta\cos\theta\cos^2\phi}{r^2}\frac{\PD}{\PD \theta} +\frac{\cos^2\theta\cos^2\phi}{r^2} \frac{\PD^2}{\PD \theta^2} +\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi}\\ &\ \ \ -\frac{2\cos\theta\sin\phi\cos\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi} +\frac{\sin^2\phi}{r} \frac{\PD}{\PD r} +\frac{\cos\theta\sin^2\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta} +\frac{\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{\sin^2\phi}{r^2\sin^2\theta} \frac{\PD^2}{\PD \phi^2}\\ ); &math( \frac{\PD^2}{\PD y^2} &=\Big( \sin\theta\sin\phi \frac{\PD}{\PD r} +\frac{1}{r}\cos\theta\sin\phi \frac{\PD}{\PD \theta} +\frac{\cos\phi}{r\sin\theta} \frac{\PD}{\PD \phi} \Big)^2\\ &= \sin^2\theta\sin^2\phi \frac{\PD^2}{\PD r^2} -\frac{\sin\theta\cos\theta\sin^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{2\sin\theta\cos\theta\sin^2\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} -\frac{\sin\phi\cos\phi}{r^2} \frac{\PD}{\PD \phi} +\frac{2\sin\phi\cos\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\theta\sin^2\phi}{r} \frac{\PD}{\PD r} +\frac{-\sin\theta\cos\theta\sin^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{\cos^2\theta\sin^2\phi}{r^2} \frac{\PD^2}{\PD \theta^2} -\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{2\cos\theta\sin\phi\cos\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\phi}{r} \frac{\PD}{\PD r} +\frac{\cos\theta\cos^2\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta} +\frac{-\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{\cos^2\phi}{r^2\sin^2\theta} \frac{\PD^2}{\PD \phi^2} ); &math( \frac{\PD^2}{\PD z^2} &=\Big( \cos\theta \frac{\PD}{\PD r} -\frac{1}{r}\sin\theta \frac{\PD}{\PD \theta} \Big)^2\\ &= \cos^2\theta \frac{\PD^2}{\PD r^2} +\frac{\sin\theta\cos\theta}{r^2} \frac{\PD}{\PD \theta} -\frac{2\sin\theta\cos\theta}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} \\ &\ \ \ +\frac{\sin^2\theta}{r} \frac{\PD}{\PD r} +\frac{\sin\theta\cos\theta}{r^2} \frac{\PD}{\PD \theta} +\frac{\sin^2\theta}{r^2} \frac{\PD^2}{\PD \theta^2} ); 足せばいい(本気?)。 &math( &\frac{\PD^2}{\PD x^2}+\frac{\PD^2}{\PD y^2}+\frac{\PD^2}{\PD z^2}\\ &= \sin^2\theta\cos^2\phi \frac{\PD^2}{\PD r^2} -\frac{\sin\theta\cos\theta\cos^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{2\sin\theta\cos\theta\cos^2\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} +\frac{\sin\phi\cos\phi}{r^2} \frac{\PD}{\PD \phi} -\frac{2\sin\phi\cos\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\theta\cos^2\phi}{r} \frac{\PD}{\PD r} +\frac{-\sin\theta\cos\theta\cos^2\phi}{r^2}\frac{\PD}{\PD \theta} +\frac{\cos^2\theta\cos^2\phi}{r^2} \frac{\PD^2}{\PD \theta^2} +\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi}\\ &\ \ \ -\frac{2\cos\theta\sin\phi\cos\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi} +\frac{\sin^2\phi}{r} \frac{\PD}{\PD r} +\frac{\cos\theta\sin^2\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta} +\frac{\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{\sin^2\phi}{r^2\sin^2\theta} \frac{\PD^2}{\PD \phi^2}\\ &\ \ \ +\sin^2\theta\sin^2\phi \frac{\PD^2}{\PD r^2} -\frac{\sin\theta\cos\theta\sin^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{2\sin\theta\cos\theta\sin^2\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} -\frac{\sin\phi\cos\phi}{r^2} \frac{\PD}{\PD \phi} +\frac{2\sin\phi\cos\phi}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\theta\sin^2\phi}{r} \frac{\PD}{\PD r} +\frac{-\sin\theta\cos\theta\sin^2\phi}{r^2} \frac{\PD}{\PD \theta} +\frac{\cos^2\theta\sin^2\phi}{r^2} \frac{\PD^2}{\PD \theta^2} -\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{2\cos\theta\sin\phi\cos\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi}\\ &\ \ \ +\frac{\cos^2\phi}{r} \frac{\PD}{\PD r} +\frac{\cos\theta\cos^2\phi}{r^2\sin\theta} \frac{\PD}{\PD \theta} +\frac{-\sin\phi\cos\phi}{r^2\sin^2\theta} \frac{\PD}{\PD \phi} +\frac{\cos^2\phi}{r^2\sin^2\theta} \frac{\PD^2}{\PD \phi^2}\\ &\ \ \ +\cos^2\theta \frac{\PD^2}{\PD r^2} +\frac{\sin\theta\cos\theta}{r^2} \frac{\PD}{\PD \theta} -\frac{2\sin\theta\cos\theta}{r} \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} \\ &\ \ \ -\frac{\sin^2\theta}{r} \frac{\PD}{\PD r}- -\frac{\sin\theta\cos\theta}{r^2} \frac{\PD}{\PD \theta} -\frac{\sin^2\theta}{r^2} \frac{\PD^2}{\PD \theta^2}\\ ); &math( &= (\sin^2\theta\cos^2\phi+\sin^2\theta\sin^2\phi+\cos^2\theta)\frac{\PD^2}{\PD r^2} \\&\ \ \ +\Big(\frac{\cos^2\theta\cos^2\phi}{r}+\frac{\sin^2\phi}{r}+\frac{\cos^2\theta\sin^2\phi}{r}+\frac{\cos^2\phi}{r} +\frac{\sin^2\theta}{r}\Big) \frac{\PD}{\PD r} \\&\ \ \ +\Big(-\cancel{\frac{\sin\theta\cos\theta\cos^2\phi}{r^2}}+\cancel{\frac{-\sin\theta\cos\theta\cos^2\phi}{r^2}}+\frac{\cos\theta\sin^2\phi}{r^2\sin\theta}-\cancel{\frac{\sin\theta\cos\theta\sin^2\phi}{r^2}}\\ &\hspace{4cm}+\cancel{\frac{-\sin\theta\cos\theta\sin^2\phi}{r^2}}+\frac{\cos\theta\cos^2\phi}{r^2\sin\theta} +\cancel{\frac{\sin\theta\cos\theta}{r^2}}+\cancel{\frac{\sin\theta\cos\theta}{r^2}}\Big) \frac{\PD}{\PD \theta} \\&\ \ \ +\Big(\frac{\cos^2\theta\cos^2\phi}{r^2}+\frac{\cos^2\theta\sin^2\phi}{r^2}+\frac{\sin^2\theta}{r^2}\Big) \frac{\PD^2}{\PD \theta^2} \\&\ \ \ +\Big(\cancel{\frac{\sin\phi\cos\phi}{r^2}}+\cancel{\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta}}+\cancel{\frac{\sin\phi\cos\phi}{r^2\sin^2\theta}}-\cancel{\frac{\sin\phi\cos\phi}{r^2}}-\cancel{\frac{\cos^2\theta\sin\phi\cos\phi}{r^2\sin^2\theta}}-\cancel{\frac{\sin\phi\cos\phi}{r^2\sin^2\theta}}\Big) \frac{\PD}{\PD \phi} \\&\ \ \ +\Big(\frac{\sin^2\phi}{r^2\sin^2\theta}+\frac{\cos^2\phi}{r^2\sin^2\theta}\Big) \frac{\PD^2}{\PD \phi^2} \\&\ \ \ +\Big(\cancel{\frac{2\sin\theta\cos\theta\cos^2\phi}{r}}+\cancel{\frac{2\sin\theta\cos\theta\sin^2\phi}{r}}-\cancel{\frac{2\sin\theta\cos\theta}{r}}\Big) \frac{\PD}{\PD r}\frac{\PD}{\PD \theta} \\&\ \ \ +\Big(-\cancel{\frac{2\sin\phi\cos\phi}{r}}+\cancel{\frac{2\sin\phi\cos\phi}{r}}\Big) \frac{\PD}{\PD r}\frac{\PD}{\PD \phi} \\&\ \ \ +\Big(-\cancel{\frac{2\cos\theta\sin\phi\cos\phi}{r^2\sin\theta}}+\cancel{\frac{2\cos\theta\sin\phi\cos\phi}{r^2\sin\theta}}\Big)\frac{\PD}{\PD \theta}\frac{\PD}{\PD \phi}\\ &= \frac{\PD^2}{\PD r^2}+\frac{2}{r} \frac{\PD}{\PD r}+\frac{\cos\theta}{r^2\sin\theta} \frac{\PD}{\PD \theta} +\frac{1}{r^2}\frac{\PD^2}{\PD \theta^2}+\frac{1}{r^2\sin^2\theta} \frac{\PD^2}{\PD \phi^2} \\ &= \frac{\PD^2}{\PD r^2}+\frac{2}{r} \frac{\PD}{\PD r} +\frac{1}{r^2}\underbrace{\bigg[\frac{1}{\sin\theta} \frac{\PD}{\PD \theta} \Big(\sin\theta\frac{\PD}{\PD \theta}\Big)+\frac{1}{\sin^2\theta} \frac{\PD^2}{\PD \phi^2}\bigg]}_{=\,\Lambda} ); 恐らくもっと簡単に求める方法もあるはず。 ** 別解 [#p2feb906] 2次元の極座標表示を利用すると少し楽らしい。~ https://twitter.com/Paul_Painleve/status/995843040244711424 2次元の極座標: &math( \begin{cases} x&=r\cos\theta\\ y&=r\sin\theta \end{cases} ); &math( \begin{cases} r^2=x^2+y^2\\ \tan^2\theta=y^2/x^2 \end{cases} ); より、 &math( 2r\frac{\partial r}{\partial x}=2x=2r\cos\theta,\ \ 2r\frac{\partial r}{\partial y}=2y=2r\sin\theta,); &math( \frac{1}{\cos^2\theta}\frac{\partial\theta}{\partial x}=-\frac{y}{x^2}=-\frac{r\sin\theta}{r^2\cos^2\theta},\ \ \frac{1}{\cos^2\theta}\frac{\partial\theta}{\partial y}=\frac{1}{x}=\frac{1}{r\cos\theta} ); などを使って、 &math( \frac{\partial}{\partial x} &=\left(\frac{\partial r}{\partial x}\right)\frac{\partial}{\partial r} +\left(\frac{\partial \theta}{\partial x}\right)\frac{\partial}{\partial \theta} =\cos\theta\frac{\partial}{\partial r}-\frac{\sin\theta}{r}\frac{\partial}{\partial \theta}\\ );~ &math( \frac{\partial}{\partial y} &=\left(\frac{\partial r}{\partial y}\right)\frac{\partial}{\partial r} +\left(\frac{\partial \theta}{\partial y}\right)\frac{\partial}{\partial \theta} =\sin\theta\frac{\partial}{\partial r}+\frac{\cos\theta}{r}\frac{\partial}{\partial \theta}\\ ); &math( \frac{\partial^2}{\partial x^2}f &=\left(\cos\theta\frac{\partial}{\partial r}-\frac{\sin\theta}{r}\frac{\partial}{\partial \theta}\right) \left(\cos\theta\frac{\partial f}{\partial r}-\frac{\sin\theta}{r}\frac{\partial f}{\partial \theta}\right)\\ &=\cos^2\theta\frac{\partial^2 f}{\partial r^2} -\cos\theta\sin\theta\left(-\frac{1}{r^2}\frac{\partial f}{\partial \theta}+\frac{1}{r}\frac{\partial^2f}{\partial r\partial\theta}\right)\\ &\hspace{1cm}-\frac{\sin\theta}{r}\left(-\sin\theta\frac{\partial f}{\partial r}+\cos\theta\frac{\partial^2 f}{\partial\theta\partial r}\right) +\frac{\sin\theta}{r^2}\left(\cos\theta\frac{\partial f}{\partial \theta}+\sin\theta\frac{\partial^2f}{\partial\theta^2}\right)\\ &=\left[\cos^2\theta\frac{\partial^2 }{\partial r^2}+\frac{\sin^2\theta}{r}\frac{\partial}{\partial r} -2r\cos\theta\sin\theta\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial\theta}\right) +\frac{\sin^2\theta}{r^2}\frac{\partial^2}{\partial\theta^2} \right]f);~ &math( \frac{\partial^2}{\partial y^2}f &=\left(\sin\theta\frac{\partial}{\partial r}+\frac{\cos\theta}{r}\frac{\partial}{\partial \theta}\right) \left(\sin\theta\frac{\partial f}{\partial r}+\frac{\cos\theta}{r}\frac{\partial f}{\partial \theta}\right)\\ &=\sin^2\theta\frac{\partial^2 f}{\partial r^2} +\sin\theta\cos\theta\left(-\frac{1}{r^2}\frac{\partial f}{\partial \theta}+\frac{1}{r}\frac{\partial^2f}{\partial r\partial\theta}\right)\\ &\hspace{1cm}+\frac{\cos\theta}{r}\left(\cos\theta\frac{\partial f}{\partial r}-\sin\theta\frac{\partial^2 f}{\partial\theta\partial r}\right) +\frac{\cos\theta}{r^2}\left(-\sin\theta\frac{\partial f}{\partial \theta}+\cos\theta\frac{\partial^2f}{\partial\theta^2}\right)\\ &=\left[\sin^2\theta\frac{\partial^2 }{\partial r^2}+\frac{\cos^2\theta}{r}\frac{\partial}{\partial r} +2r\cos\theta\sin\theta\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial\theta}\right) +\frac{\cos^2\theta}{r^2}\frac{\partial^2}{\partial\theta^2} \right]f\\ ); なので、 &math( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} &=\frac{\partial^2 }{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial\theta^2}\\ &=\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2}{\partial\theta^2} ); を得る。これ自体有用な式なのだけれど、球座標系の計算にどう使うかというと、 &math(\bm r); から &math(x\mathrm-y); 平面に垂線を下ろした点と原点との距離を &math(\rho=r\sin\theta); と書き、 &math((x,y,z)\to(\rho,\phi,z)\to(r,\theta,\phi)); の2段階の変数変換を考える。1段目は、 &math( \begin{cases} x=\rho\cos\phi\\ y=\rho\sin\phi\\ z=z \end{cases} ); であるから、上記を参考に、 &math( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} &=\frac{\partial^2 }{\partial \rho^2}+\frac{1}{\rho}\frac{\partial}{\partial \rho}+\frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2}\\ ); を得る。一方、2段目は、 &math( \begin{cases} \rho=r\sin\theta\\ \phi=\phi\\ z=r\cos\theta \end{cases} ); であるから、上記を参考に、 &math( \frac{\partial^2}{\partial z^2}+\frac{\partial^2}{\partial \rho^2} &=\frac{\partial^2 }{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial\theta^2}\\ ); 辺々加えると、&math(\partial^2/\partial\rho^2); の項は打消し合って、 &math( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} &=\frac{\partial^2 }{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r} +\frac{1}{r^2}\frac{\partial^2}{\partial\theta^2} +\frac{1}{\rho}\frac{\partial}{\partial \rho} +\frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2} ); 2次元の &math(\partial/\partial y); の計算結果から、 &math( \frac{\partial}{\partial \rho} =\sin\theta\frac{\partial}{\partial r}+\frac{\cos\theta}{r}\frac{\partial}{\partial \theta}\\ ); なので、 &math( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} &=\frac{\partial^2 }{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r} +\frac{1}{r^2}\frac{\partial^2}{\partial\theta^2} +\frac{1}{r\sin\theta}\left(\sin\theta\frac{\partial}{\partial r}+\frac{\cos\theta}{r}\frac{\partial}{\partial \theta}\right) +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\\ &=\frac{\partial^2 }{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r} +\frac{1}{r^2}\frac{\partial^2}{\partial\theta^2} +\frac{1}{r^2}\frac{\cos\theta}{\sin\theta}\frac{\partial}{\partial \theta} +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\\ &=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) +\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left( \sin\theta\frac{\partial}{\partial\theta}\right) +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\\ ); として、上で得たのと同じ結果が得られる。 これはこれで大変だけれど、完全に力ずくでやるより見通しが良い。 ** こちらもとても参考になる [#d755cebe] http://irobutsu.a.la9.jp/PhysTips/Lap.html *** 「第1の方法:変分法を使え。」において [#ya83c81d] &math(dr, d\theta, d\phi); に対する &math(\bm r); の変化量はそれぞれ、 &math(dr, r\,d\theta, r\sin\theta\,d\phi); で、互いに直交するから、 これらの方向に &math(x',y',z'); 軸を取るのと比べれば、第一感では &math( \nabla^2 &\overset{??}{=}\frac{\partial^2}{\partial r^2} +\frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial \phi^2}\\ ); などとなりそうなところ、実際には &math( \nabla^2&=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) +\frac{1}{r^2}\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial}{\partial \theta}\right) +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial \phi^2}\\ &\hspace{5mm}\uparrow\hspace{11mm}\uparrow\hspace{21mm}\uparrow\hspace{16mm}\uparrow ); のように余計な因子が紛れ込むのだが、上記のリンク先ではラプラシアンが &math( \nabla^2 &=\frac{1}{r^2\sin\theta}\frac{\partial}{\partial r}\left(r^2\sin\theta\frac{\partial}{\partial r}\right) +\frac{1}{r^2\sin\theta}\frac{1}{r}\frac{\partial}{\partial \theta}\left(r^2\sin\theta\frac{1}{r}\frac{\partial}{\partial \theta}\right) +\frac{1}{r^2\sin\theta}\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\left(r^2\sin\theta\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\right)\\ ); の形に導かれる。 「1回目の微分」をした後に体積素 &math((r^2\sin\theta)dr\,d\theta\,d\phi); の係数 &math(r^2\sin\theta); を掛け、「2回目の微分」をした後に同じ値で割る形になっている。 これは覚えやすい。 *** 「第2の方法:ちゃんと基底ベクトルも微分しろ。」において [#aa4b3355] &math( \bm \nabla=\bm e_r\frac{\partial}{\partial r}+\bm e_\theta\frac{1}{r}\frac{\partial}{\partial \theta}+\bm e_\phi\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi} ); から &math( \nabla^2&=\bm\nabla\cdot\bm\nabla\\ &=\bigg(\bm e_r\frac{\partial}{\partial r}+\bm e_\theta\frac{1}{r}\frac{\partial}{\partial \theta}+\bm e_\phi\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\bigg)\cdot \bigg(\bm e_r\frac{\partial}{\partial r}+\bm e_\theta\frac{1}{r}\frac{\partial}{\partial \theta}+\bm e_\phi\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\bigg) ); のように計算する際、&math(\bm e_r,\bm e_\theta,\bm e_\phi); は直交するため一見すると &math( \nabla^2 &\overset{??}{=}\frac{\partial^2}{\partial r^2} +\frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial \phi^2}\\ ); となりそうなところ、上記リンク先では &math( \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \phi} \end{pmatrix} \begin{pmatrix} \bm e_r & \bm e_\theta & \bm e_\phi \end{pmatrix}=\begin{pmatrix} \bm 0 & \bm 0 & \bm 0 \\ \bm e_\theta & -\bm e_r & \bm 0 \\ (\sin\theta)\bm e_\phi & (\cos\theta)\bm e_\phi & -\bm e_r \end{pmatrix} ); のように、&math(\bm e_r,\bm e_\theta,\bm e_\phi); 自体が &math(\theta,\phi); の関数であることを考慮しなければならないことを指摘し、 &math(\bm e_\theta\frac{\partial\bm e_r}{\partial \theta}); の項から &math(\frac{1}{r}\frac{\partial}{\partial r}); &math(\bm e_\phi\frac{\partial\bm e_r}{\partial \theta}); の項から &math(\frac{1}{r}\frac{\partial}{\partial r}); がもう1つ &math(\bm e_\phi\frac{\partial\bm e_\theta}{\partial \theta}); の項から &math(\frac{\cos\theta}{r^2\sin\theta}\frac{\partial}{\partial\theta}); がそれぞれ出ることにより、正しいラプラシアンが得られることを示している。 この内容は [[微分形式]] の話も参考になるはず。 この部分を理解するには [[微分形式]] の話も参考になるはず。 * 球座標の角運動量演算子 [#nad66919] &math( \hat l_x&=-i\hbar\Big(y\frac{\PD}{\PD z}-z\frac{\PD}{\PD y}\Big)\\ &=-i\hbar\bigg[r\sin\theta\sin\phi\Big(\cancel{\cos\theta \frac{\PD}{\PD r}}-\frac{1}{r}\sin\theta \frac{\PD}{\PD \theta}\Big) -r\cos\theta\Big(\cancel{\sin\theta\sin\phi \frac{\PD}{\PD r}} +\frac{1}{r}\cos\theta\sin\phi \frac{\PD}{\PD \theta} +\frac{\cos\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)\bigg]\\ &=i\hbar\Big(\sin\phi\frac{\PD}{\PD\theta}+\frac{\cos\phi}{\tan\theta}\frac{\PD}{\PD\phi}\Big) ); &math( \hat l_y&=-i\hbar\Big(z\frac{\PD}{\PD x}-x\frac{\PD}{\PD z}\Big)\\ &=-i\hbar\bigg[r\cos\theta\Big(\cancel{\sin\theta\cos\phi \frac{\PD}{\PD r}} +\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta} -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big) -r\sin\theta\cos\phi\Big(\cancel{\cos\theta \frac{\PD}{\PD r}} -\frac{1}{r}\sin\theta \frac{\PD}{\PD \theta}\Big)\bigg]\\ &=i\hbar\Big(-\cos\phi\frac{\PD}{\PD\theta}+\frac{\sin\phi}{\tan\theta}\frac{\PD}{\PD\phi}\Big) ); &math( \hat l_z&=-i\hbar\Big(x\frac{\PD}{\PD y}-y\frac{\PD}{\PD x}\Big)\\ &=-i\hbar\bigg[r\sin\theta\cos\phi\Big(\cancel{\sin\theta\sin\phi \frac{\PD}{\PD r}} +\cancel{\frac{1}{r}\cos\theta\sin\phi \frac{\PD}{\PD \theta}} +\frac{\cos\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)\\ &\hspace{1cm}-r\sin\theta\sin\phi\Big(\cancel{\sin\theta\cos\phi \frac{\PD}{\PD r}} +\cancel{\frac{1}{r}\cos\theta\cos\phi \frac{\PD}{\PD \theta}} -\frac{\sin\phi}{r\sin\theta} \frac{\PD}{\PD \phi}\Big)\bigg]\\ &=-i\hbar\frac{\PD}{\PD\phi} ); &math( \hat{\bm l}^2&=\hat l_x^2+\hat l_y^2+\hat l_z^2\\ &= -\hbar^2\Big(\sin\phi\frac{\PD}{\PD\theta}+\frac{\cos\phi}{\tan\theta}\frac{\PD}{\PD\phi}\Big)^2 -\hbar^2\Big(-\cos\phi\frac{\PD}{\PD\theta}+\frac{\sin\phi}{\tan\theta}\frac{\PD}{\PD\phi}\Big)^2 -\hbar^2\frac{\PD^2}{\PD\phi^2}\\ &= -\hbar^2\Big( \sin^2\phi\frac{\PD^2}{\PD\theta^2} -\cancel{\frac{\sin\phi\cos\phi}{\sin^2\theta}\frac{\PD}{\PD\phi}} +\cancel{\frac{2\sin\phi\cos\phi}{\tan\theta}\frac{\PD}{\PD\theta}\frac{\PD}{\PD\phi}} +\frac{\cos^2\phi}{\tan\theta}\frac{\PD}{\PD\theta} +\cancel{\frac{-\sin\phi\cos\phi}{\tan^2\theta}\frac{\PD}{\PD\phi}} +\frac{\cos^2\phi}{\tan^2\theta}\frac{\PD^2}{\PD\phi^2} \Big)\\ &\ \ \ -\hbar^2\Big( \cos^2\phi\frac{\PD^2}{\PD^2\theta} +\cancel{\frac{\sin\phi\cos\phi}{\sin^2\theta}\frac{\PD}{\PD\phi}} -\cancel{\frac{2\sin\phi\cos\phi}{\tan\theta}\frac{\PD}{\PD\theta}\frac{\PD}{\PD\phi}} +\frac{\sin^2\phi}{\tan\theta}\frac{\PD}{\PD\theta} +\cancel{\frac{\sin\phi\cos\phi}{\tan^2\theta}\frac{\PD}{\PD\phi}} +\frac{\sin^2\phi}{\tan^2\theta}\frac{\PD^2}{\PD\phi^2} \Big)\\ &\ \ \ -\hbar^2\frac{\PD^2}{\PD\phi^2}\\ &=-\hbar^2\Big[\frac{\PD^2}{\PD\theta^2}+\frac{1}{\tan\theta}\frac{\PD}{\PD\theta}+\Big(\frac{1}{\tan^2\theta}+1\Big)\frac{\PD^2}{\PD\phi^2}\Big]\\ &=-\hbar^2\Big(\frac{\PD^2}{\PD\theta^2}+\frac{\cos\theta}{\sin\theta}\frac{\PD}{\PD\theta}+\frac{1}{\sin^2\theta}\frac{\PD^2}{\PD\phi^2}\Big)\\ &=-\hbar^2\Big[\frac{1}{\sin\theta}\frac{\PD}{\PD\theta}\Big(\sin\theta\frac{\PD}{\PD\theta}\Big)+\frac{1}{\sin^2\theta}\frac{\PD^2}{\PD\phi^2}\Big]\\ &=-\hbar^2\hat\Lambda );
Counter: 29638 (from 2010/06/03),
today: 3,
yesterday: 11