歯車について勉強する6 の履歴(No.1)
更新LANG: p5js_live // src/css-text.ts function generateRandomId(length) { let result = ""; const characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"; const charactersLength = characters.length; let counter = 0; while (counter < length) { result += characters.charAt(Math.floor(Math.random() * charactersLength)); counter += 1; } return result; } var cssText = (id) => ` @media screen and (min-width: 640px) { #${id} { position: absolute; left: 0; top: 0; opacity: 0.2; } #${id}:hover { opacity: 0.7; } #${id} .control-slider { padding-left: 10px; } } @media screen and (max-width: 639px) { #${id} .check-hide-tools { display: none !important; } #${id} { height: 30vh; overflow-y: scroll; line-height: 2; } #${id} > :last-child { padding-bottom: 10vh; } #${id} .control-checkbox { width:85px !important; } #${id} .control-slider input { width: 200px !important; } } #${id} { display: block; max-width: 500px } #${id} .control-slider { display: block } #${id} .control-slider :first-child { display: inline-block; width: 80px } #${id} .control-slider :nth-child(2) { display: inline-block; width: 50px } #${id} .control-slider input { display: inline-block; width: 350px; } #${id} .control-checkbox { display:inline-block; width:110px; overflow:hidden }
`;
// src/initializeControls.ts function initializeControls(parent, inputChanged = () => { }) { const id = generateRandomId(8); const wrapper = elem("div", "", [elem("style", cssText(id))], { id }); parent.appendChild(wrapper); const wrapControls = elem("div", "", [], {}); const checkHide = createCheckbox(wrapper, "ツールを非表示", () => { wrapControls.style.display = checkHide.checked ? "none" : "block"; }); checkHide.parentElement.classList.add("check-hide-tools"); wrapper.appendChild(wrapControls); const controls = { alpha: createSlider( wrapControls, "圧力角", { min: 10, max: 32, value: 20, step: 1 }, inputChanged ), z1: createSlider(wrapControls, "歯数1", { min: 4, max: 200, value: 20, step: 1 }, inputChanged), z2: createSlider(wrapControls, "歯数2", { min: 4, max: 200, value: 30, step: 1 }, inputChanged), axesAngle: createSlider( wrapControls, "軸角度", { min: 20, max: 160, value: 90, step: 5 }, inputChanged ), theta: createSlider(wrapControls, "θ", { min: -5, max: 5, value: 0, step: 0.02 }, inputChanged), stop: false }; controls.theta.addEventListener("mousedown", () => { controls.stop = true; }); controls.theta.addEventListener("mouseup", () => { controls.stop = false; }); return { get z1() { return Number(controls.z1.value); }, get z2() { return Number(controls.z2.value); }, get alpha() { return Number(controls.alpha.value) / 180 * Math.PI; }, get fillet() { return 0.4; }, get mk() { return 1; }, get mf() { return 1.25; }, get axesAngle() { return Number(controls.axesAngle.value); }, get theta() { return Number(controls.theta.value); }, set theta(value) { controls.theta.value = value.toPrecision(4); controls.theta.doInput(); }, incrementTheta() { const delta = 0.01; if (controls.stop) return; if (this.theta + delta >= Number(controls.theta.max)) { this.theta = this.theta + delta - Number(controls.theta.max) + Number(controls.theta.min); } else { this.theta += delta; } } }; } function elem(tag, html = "", children = [], props = {}, events = {}) { const result = document.createElement(tag); if (html != "") result.innerHTML = html; children.forEach((c) => result.appendChild(c)); Object.entries(props).sort((a, b) => a[0] < b[0] ? -1 : a[0] > b[0] ? 1 : 0).forEach(([k, v]) => { if (k == "class") { result.className = String(v); } else if (typeof v == "object") { Object.entries(v).forEach(([k2, v2]) => result[k][k2] = v2); } else { result[k] = v; } }); const notIsArray = (maybeArray) => { return !Array.isArray(maybeArray); }; Object.entries(events).forEach(([k, v]) => { if (notIsArray(v)) v = [v]; v.forEach((f) => result.addEventListener(k, f)); }); return result; } function createSlider(parent, label, option, oninput) { const value = elem("span", String(option.value)); const slider = elem( "input", "", [], { type: "range", ...option }, { input: () => slider.doInput() } ); slider.doInput = () => { value.innerHTML = slider.value; oninput(); }; const wrapper = elem("div", "", [elem("span", label), value, slider], { class: "control-slider" }); parent.appendChild(wrapper); return slider; } function createCheckbox(parent, label, oninput, checked = false) { const check = elem( "input", "", [], { type: "checkbox", checked }, { input: (e) => check.doInput(e) } ); check.doInput = oninput; const wrapper = elem("label", "", [check, elem("span", label)], { class: "control-checkbox" }); parent.appendChild(wrapper); return check; }
// src/vector3d.ts var Vector3D = class _Vector3D { x; y; z; constructor(x, y, z) { this.x = x; this.y = y; this.z = z; } static polar(r, theta, phi) { return new _Vector3D( r * Math.sin(phi) * Math.cos(theta), r * Math.sin(phi) * Math.sin(theta), r * Math.cos(phi) ); } angle() { return Math.atan2(this.y, this.x); } equal(v) { const epsilon = 1e-6; return Math.abs(this.x - v.x) < epsilon && Math.abs(this.y - v.y) < epsilon && Math.abs(this.z - v.z) < epsilon; } add(v) { return new _Vector3D(this.x + v.x, this.y + v.y, this.z + v.z); } sub(v) { return new _Vector3D(this.x - v.x, this.y - v.y, this.z - v.z); } mul(scalar) { return new _Vector3D(this.x * scalar, this.y * scalar, this.z * scalar); } rotate(axis, angle) { axis = axis.normalize(); const cos2 = Math.cos(angle); const sin2 = Math.sin(angle); const { x, y, z } = this; const { x: ux, y: uy, z: uz } = axis; const dot = this.inner(axis); const cross = this.outer(axis); return new _Vector3D( x * cos2 + cross.x * sin2 + ux * dot * (1 - cos2), y * cos2 + cross.y * sin2 + uy * dot * (1 - cos2), z * cos2 + cross.z * sin2 + uz * dot * (1 - cos2) ); } flipY() { return new _Vector3D(this.x, -this.y, this.z); } flipX() { return new _Vector3D(-this.x, this.y, this.z); } flipZ() { return new _Vector3D(this.x, this.y, -this.z); } norm() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); } normalize(length = 1) { const len = this.norm() / length; return new _Vector3D(this.x / len, this.y / len, this.z / len); } polar() { return [this.norm(), this.angle()]; } inner(v) { return this.x * v.x + this.y * v.y + this.z * v.z; } outer(v) { return new _Vector3D( this.y * v.z - this.z * v.y, this.z * v.x - this.x * v.z, this.x * v.y - this.y * v.x ); } cross(v) { return this.outer(v); } distance(v) { return v.sub(this).norm(); } normalVectors() { const x = this.x; const y = this.y; const z = this.z; if (Math.abs(x) > Math.abs(y)) { return [new _Vector3D(-z, 0, x).normalize(), new _Vector3D(0, -z, y).normalize()]; } else { return [new _Vector3D(0, -z, y).normalize(), new _Vector3D(-z, 0, x).normalize()]; } } };
// src/main.ts var { max, sin, cos, tan, asin, acos, atan, atan2, PI } = Math; var cameraP = new Vector3D(3, 0, 0); var cameraU = new Vector3D(0, -1, 0); var cameraV = new Vector3D(0, 0, 1); var cameraW = PI / 8; var sketch = (p2) => { let params; const canvas = { width: 800, height: 800, ox: 0, oy: 0 }; p2.mouseDragged = (e) => { if (e.target.tagName !== "CANVAS") return; cameraP = cameraP.sub(cameraU.mul(2 * (p2.mouseX - p2.pmouseX) * (cameraP.norm() - 1) / canvas.width)).normalize(cameraP.norm()); cameraU = cameraP.outer(cameraV).normalize(); cameraP = cameraP.sub(cameraV.mul(2 * (p2.mouseY - p2.pmouseY) * (cameraP.norm() - 1) / canvas.width)).normalize(cameraP.norm()); cameraV = cameraP.outer(cameraU).normalize(-1); inputChanged(); return true; }; p2.mouseWheel = (event) => { const delta = event.deltaY / 200; let n = cameraP.norm() * (1 + delta); n = Math.max(1.1, n); cameraP = cameraP.normalize(n); inputChanged(); return true; }; p2.setup = () => { const { width, height } = canvas; canvas.ox = width / 2; canvas.oy = height * 2 / 3; const c = p2.createCanvas(width, height); c.style("max-width", "100%"); c.style("height", "auto"); const wrapper = c.elt.parentElement; params = initializeControls(wrapper, inputChanged); inputChanged(); setInterval(() => { params.incrementTheta(); }, 100); }; const inputChanged = () => { const { width, height } = canvas; const sigma = params.axesAngle * PI / 180; const gammaP1 = atan2(sin(sigma), params.z2 / params.z1 + cos(sigma)); const gammaP2 = sigma - gammaP1; const r = params.z1 / (2 * sin(gammaP1)); const rm = 1 / r; const axis1 = new Vector3D(cos(gammaP1), 0, sin(gammaP1)); const axis2 = new Vector3D(cos(gammaP2), 0, -sin(gammaP2)); const eps = 1e-5; function proj(lambdaOrVec, phi = 0) { if (typeof lambdaOrVec === "number") { lambdaOrVec = new Vector3D( cos(phi) * cos(lambdaOrVec), sin(phi) * cos(lambdaOrVec), sin(lambdaOrVec) ); } else { lambdaOrVec = lambdaOrVec.normalize(); } const p3 = lambdaOrVec.sub(cameraP); if (p3.inner(lambdaOrVec) > 0) return [NaN, NaN]; const u = p3.inner(cameraU); const v = p3.inner(cameraV); const d = -p3.inner(cameraP.normalize()); return [(1 + atan2(u, d) / cameraW) * (width / 2), (1 + atan2(v, d) / cameraW) * (width / 2)]; } function isArrayOf(obj, predicate) { return Array.isArray(obj) && obj.every(predicate); } function drawCurve(points) { if (points.length === 0) return; if (isArrayOf(points, (item) => item instanceof Vector3D)) { points = points.map((p3) => proj(p3)); } let last = [NaN, NaN]; points.forEach((point) => { if (isNaN(point[0])) { if (!isNaN(last[0])) { p2.curveVertex(...last); p2.endShape(); } last = point; return; } if (isNaN(last[0])) { p2.beginShape(); p2.curveVertex(...point); } p2.curveVertex(...point); last = point; }); if (!isNaN(last[0])) { p2.curveVertex(...last); p2.endShape(); } } const initializeCanvas = () => { p2.fill(220); p2.rect(0, 0, width, height); p2.stroke(100); for (let j = 0; j <= 18; j++) { const phi = j * PI / 18 - PI / 2; const points = []; for (let lambda = -PI; lambda <= PI; lambda += PI / 60 - eps) { points.push(proj(phi, lambda)); } if (j % 9 === 0) { p2.stroke(160); } else { p2.stroke(200); } p2.noFill(); drawCurve(points); } for (let i = 0; i <= 36; i++) { const lambda = i * PI / 18; const points = []; for (let phi = -PI / 2; phi <= PI / 2; phi += PI / 30 - eps) { const pp = proj(phi, lambda); points.push(pp); } if (i % 9 === 0) { p2.stroke(160); } else { p2.stroke(200); } p2.noFill(); drawCurve(points); } (() => { p2.drawingContext.setLineDash([10, 10]); const points = []; const a = new Vector3D(0, cos(params.alpha), -sin(params.alpha)); const v = new Vector3D(1, 0, 0); for (let i = 0; i <= 20; i++) { points.push(proj(v.rotate(a, (-0.1 + 0.2 * i / 20) * PI))); } drawCurve(points); p2.drawingContext.setLineDash([]); })(); (() => { p2.drawingContext.setLineDash([10, 10]); const points = []; const a = new Vector3D(0, sin(params.alpha), cos(params.alpha)); const v = new Vector3D(1, 0, 0); for (let i = 0; i <= 20; i++) { points.push(proj(v.rotate(a, (-0.1 + 0.2 * i / 20) * PI))); } drawCurve(points); p2.drawingContext.setLineDash([]); })(); }; initializeCanvas(); function drawCircle(axis, delta) { const [axis1u, axis1v] = axis.normalVectors(); const points = []; const n = 36; for (let i = 0; i <= 2 * n; i++) { const t = i * PI / n; const p12 = axis.add(axis1u.mul(tan(delta) * cos(t))).add(axis1v.mul(tan(delta) * sin(t))); points.push(proj(p12)); } drawCurve(points); } p2.stroke(0); p2.strokeWeight(2); p2.circle(...proj(axis1), 2); p2.circle(...proj(axis2), 2); const gammaF1 = gammaP1 - params.mf * atan(rm); const gammaK1 = gammaP1 + params.mk * atan(rm); const gammaT1 = gammaP1 + params.mf * atan(rm); const gammaF2 = gammaP2 - params.mf * atan(rm); const gammaK2 = gammaP2 + params.mk * atan(rm); const gammaT2 = gammaP2 + params.mf * atan(rm); p2.stroke(160); p2.strokeWeight(1); p2.noFill(); p2.drawingContext.setLineDash([10, 10]); drawCircle(axis1, gammaP1); drawCircle(axis1, gammaF1); drawCircle(axis1, gammaK1); drawCircle(axis1, gammaT1); drawCircle(axis2, gammaP2); drawCircle(axis2, gammaF2); drawCircle(axis2, gammaK2); drawCircle(axis2, gammaT2); p2.drawingContext.setLineDash([]); const gammaB1 = asin(cos(params.alpha) * sin(gammaP1)); const gammaB2 = asin(cos(params.alpha) * sin(gammaP2)); drawCircle(axis1, gammaB1); drawCircle(axis2, gammaB2); function trans(epsilon, v, axis, gammaB) { axis = axis.normalize(cos(gammaB)); v = v.normalize(); const oq = v.sub(axis); const om = oq.rotate(axis, epsilon); const oom = axis.add(om); const axis22 = oom.sub(axis.normalize(1 / cos(gammaB))); const op = oom.rotate(axis22, epsilon * sin(gammaB)); return op; } function sphericalInvolute(axis, v, gammaB, gammaF, gammaK) { const points = []; for (let i = 0; i <= 20; i++) { const t = gamma2epsilon(gammaF, gammaB) + (gamma2epsilon(gammaK, gammaB) - gamma2epsilon(gammaF, gammaB)) * i / 20; points.push(trans(t, v, axis, gammaB)); } return points; } function gamma2theta(gamma, gammaB) { const varphi = acos(cos(gamma) / cos(gammaB)); return varphi / sin(gammaB) - atan2(tan(varphi), sin(gammaB)); } function gamma2epsilon(gamma, gammaB) { const varphi = acos(cos(gamma) / cos(gammaB)); return varphi / sin(gammaB); } function drawArc(axis, p12, p2Angle, options = {}) { const { greatCircle = false, n = 6 } = options; const c = []; if (greatCircle) { const v1 = p12; const v2 = typeof p2Angle === "number" ? v1.rotate(axis, p2Angle) : p2Angle; const t = acos(v1.inner(v2) / (v1.norm() * v2.norm())); for (let j = 0; j <= n; j++) { const t2 = t * j / n; c.push(v1.rotate(axis, t2)); } } else { const v1 = p12.sub(axis); const v2 = typeof p2Angle === "number" ? v1.rotate(axis, p2Angle) : p2Angle.sub(axis); const t = acos(v1.inner(v2) / (v1.norm() * v2.norm())); for (let j = 0; j <= n; j++) { const t2 = t * j / n; c.push(axis.add(v1.rotate(axis, t2))); } } drawCurve(c); } p2.stroke(0); const p1 = new Vector3D(cos(gammaP1 - gammaB1), 0, sin(gammaP1 - gammaB1)).rotate( axis1, -gamma2theta(gammaP1, gammaB1) ); const curve1 = sphericalInvolute(axis1, p1, gammaB1, max(gammaB1, gammaF1), gammaK1); for (let i = 0; i < params.z1; i++) { const c1 = curve1.map((p3) => p3.rotate(axis1, i * 2 * PI / params.z1)).map( (p3) => p3.rotate(axis1, 2 * PI / params.z1 * params.theta) ); const c2 = curve1.map((p3) => p3.flipY().rotate(axis1, (i + 1 / 2) * 2 * PI / params.z1)).map( (p3) => p3.rotate(axis1, 2 * PI / params.z1 * params.theta) ); drawCurve(c1); drawCurve(c2); drawArc(axis1.normalize(cos(gammaK1)), c1.at(-1), c2.at(-1)); if (gammaB1 > gammaF1) { const a1 = axis1.cross(c1.at(0)); drawArc(a1, c1.at(0), gammaB1 - gammaF1, { greatCircle: true }); const a2 = axis1.cross(c2.at(0)); drawArc(a2, c2.at(0), gammaB1 - gammaF1, { greatCircle: true }); drawArc( axis1.normalize(cos(gammaF1)), c2.at(0).rotate(a2, gammaB1 - gammaF1).rotate(axis1, -2 * PI / params.z1), c1.at(0).rotate(a1, gammaB1 - gammaF1) ); } else { drawArc( axis1.normalize(cos(gammaF1)), c2.at(0).rotate(axis1, -2 * PI / params.z1), c1.at(0) ); } } const p22 = new Vector3D(cos(gammaP2 - gammaB2), 0, -sin(gammaP2 - gammaB2)).rotate( axis2, -gamma2theta(gammaP2, gammaB2) ); const curve2 = sphericalInvolute(axis2, p22, gammaB2, max(gammaB2, gammaF2), gammaK2); for (let i = 0; i < params.z2; i++) { const c1 = curve2.map((p3) => p3.rotate(axis2, i * 2 * PI / params.z2)).map( (p3) => p3.rotate(axis2, -2 * PI / params.z2 * params.theta) ); const c2 = curve2.map((p3) => p3.flipY().rotate(axis2, (i + 1 / 2) * 2 * PI / params.z2)).map( (p3) => p3.rotate(axis2, -2 * PI / params.z2 * params.theta) ); drawCurve(c1); drawCurve(c2); drawArc(axis2.normalize(cos(gammaK2)), c1.at(-1), c2.at(-1)); if (gammaB2 > gammaF2) { const a1 = axis2.cross(c1.at(0)); drawArc(a1, c1.at(0), gammaB2 - gammaF2, { greatCircle: true }); const a2 = axis2.cross(c2.at(0)); drawArc(a2, c2.at(0), gammaB2 - gammaF2, { greatCircle: true }); drawArc( axis2.normalize(cos(gammaF2)), c2.at(0).rotate(a2, gammaB2 - gammaF2).rotate(axis2, -2 * PI / params.z2), c1.at(0).rotate(a1, gammaB2 - gammaF2) ); } else { drawArc( axis2.normalize(cos(gammaF2)), c2.at(0).rotate(axis2, -2 * PI / params.z2), c1.at(0) ); } } return; };
Counter: 74 (from 2010/06/03),
today: 5,
yesterday: 8