生成・消滅演算子による多粒子系の記述 の履歴(No.1)

更新


量子力学Ⅰ

生成・消滅演算子による多粒子系の記述

多粒子状態の数表示

1粒子に対する正規直交完全系を $\psi_1,\psi_2,\psi_2,\dots$ とし、そのそれぞれを $n_1,n_2,n_3,\dots$ 個の粒子($n_i$ は $0$ 以上の整数値)が占めることで作られる多粒子状態を $|n_1,n_2,\dots\rangle$ と表す(位相等について後でもう少し詳しい定義を与える)。

1粒子状態が完全であれば $|n_1,n_2,\dots\rangle$ も完全になるため、任意の多粒子状態をこの重ね合わせで表せる。

$$ \Psi=\sum_{\{n_1,n_2,\dots\}} C_{n_1,n_2,\dots}|n_1,n_2,\dots\rangle $$

一方、$|n_1,n_2,\dots\rangle$ に作用して粒子数 $n_i$ を取り出す「数演算子」 $\hat n_i$ を導入する。

$$ \hat n_i\,|n_1,n_2,\dots\rangle= n_i\,|n_1,n_2,\dots\rangle $$

$|n_1,n_2,\dots\rangle$ は $\hat n_i$ の固有状態とみなせることから、これらは「数状態」と呼ばれる。固有値が必ず実数となることから $\hat n_i$ はエルミートである。数状態は各1粒子状態を占める粒子の個数が確定した状態であるのに対して、一般の $\Psi$ に対してはそのような個数は確率的にしか決まらない。任意の $\Psi$ を数状態で展開した形は「数表示」と呼ばれる。

消滅演算子・生成演算子

数状態に作用して $n_i$ を1だけ減少させる演算子として「消滅演算子」$\hat c_i$ を考える。ただし、作用後の関数は規格化されているとは限らないとして係数を $a_n$ と書いておく。

$$ \hat c\,|n\rangle=a_n\,|n-1\rangle\propto |n-1\rangle $$

粒子数が負にならないための条件として

$$ \hat c\,|0\rangle=0\ \ \ \ \text{すなわち} \ \ a_0=0 $$

を与えておく。$\hat c\,|n\rangle$ に $\hat n$ を作用させると、

$$ \hat n\hat c\,|n\rangle=(n-1)\hat c\,|n\rangle=\hat c(n-1)\,|n\rangle=\hat c(\hat n-1)\,|n\rangle $$

より、任意の $\Psi$ に対して

$$ [\hat n,\hat c]=-\hat c $$

が言える。

両辺のエルミート共役を取ると、

$$ \begin{aligned} [\hat n,\hat c]^\dagger=\hat c^\dagger\hat n^\dagger-\hat n^\dagger\hat c^\dagger=\hat c^\dagger\hat n-\hat n\hat c^\dagger=-c^\dagger \end{aligned} $$

すなわち、

$$ [\hat n,\hat c^\dagger]=\hat c^\dagger $$

であり、また、

$$ \hat n\hat c^\dagger=c^\dagger(\hat n+1) $$

である。この両辺を $|n\rangle$ に作用させれば

$$ \hat n\hat c^\dagger\,|n\rangle=c^\dagger(\hat n+1)\,|n\rangle=(n+1)c^\dagger\,|n\rangle $$

すなわち、

$$c^\dagger\,|n\rangle\propto|n+1\rangle$$

となり、$\hat c^\dagger$ が生成演算子として働くことがわかる。

ここでは係数を

$$c^\dagger\,|n\rangle=b_n\,|n+1\rangle$$

と書いておく。


Counter: 17383 (from 2010/06/03), today: 23, yesterday: 22