線形写像・像・核・階数 のバックアップ差分(No.4)

更新


  • 追加された行はこの色です。
  • 削除された行はこの色です。
[[線形代数Ⅱ]]

#contents
#mathjax

* 写像 [#h358e130]

&math(f); が集合 &math(U); から集合  &math(U'); への写像であることを、

&math(f: U \to U'); 

と書く。

このような &math(f); は、
&math(U); の元それぞれに対して1つずつ、
&math(U'); の元を対応させる規則のことである

> &math(\forall x\in U, f(x)\in U');

「1つずつ」が重要

+ 対応する元が &math(U'); の外に出てしまうようなら &math(U\to U'); の写像とは呼ばない~
&math(f(x)=1/x, f(0)\not\in \mathbb R);
+ 対応する元が2つ以上あれば写像とは呼ばない~
&math(f(x)=|x|^{1/2}=\pm\sqrt x, f(1)=\set{1,-1}\not\in \mathbb R);~
(複素関数論では多価関数を扱う)
+ 異なる元 &math(x_1,x_2\in U); に対して、同じ &math(x'\in U'); が対応するのは問題ない~
&math(f(x)=|x|, f(1)=f(-1)=1\in \mathbb R);
+ 対応する &math(U); の元がない &math(U'); の元が存在するのも問題ない~
&math(f(x)=|x|, \set{x|f(x)=-1}=\set{});

** 線形写像 [#ibeddaa7]
* 線形写像 [#ibeddaa7]

&math(V,V'); を線形空間として、
&math(f:V\to V'); が次の条件を満たすとき、&math(f); は「線形である」と言うのであった。

- &math(f(a\bm x+b\bm y)=af(\bm x)+bf(\bm y));

すなわち、写像がベクトル和やスカラー倍に対して透過的であるということ。

左辺の和やスカラー倍が &math(V); で定義された演算であるのに対して、~
右辺の和やスカラー倍は &math(V'); で定義された演算であることに注意せよ。~
(すなわち &math(V); と &math(V'); は同じスカラーの上に定義されている必要がある)

あるいは、&math(T:V\to V'); として、

- &math(T(\bm x+\bm y)=T\bm x+T\bm y);
- &math(T(c\bm x)=cT\bm x);

のように括弧を省略して書くこともよく行われる。
のように引数が1つの時に括弧を省略して書くこともよく行われる。

注)~
左辺の和やスカラー倍が &math(V); で定義された演算であるのに対して、~
右辺の和やスカラー倍は &math(V'); で定義された演算であることに注意せよ。~
(すなわち &math(V); と &math(V'); は同じスカラーの上に定義されている必要がある)

例:~
&math(V=\{xの3次以下の多項式\});、&math(V'=\{xの2次以下の多項式\}); として、
&math(T:V\to V'); を

&math(T\bm x\equiv\frac{d}{dx} \bm x);

と定義すれば、これは線形写像になる。~
(関数線形空間に対して微分や積分を線形写像と考えるのはこれから非常に良く出てくる考え方)
(微分や積分は 典型的な線形写像 としてこれから良く出てくる)

このため &math(T(\bm x)); だけでなく &math(Tx); という書き方も良くする。
&math(Tx); という書き方は &math(\frac{d}{dx} \bm x); と対応する。

こういう場合、&math(T); を「線形演算子」などとも呼ぶ。

例:~
上の、&math(ax^2+bx+c\in V\to (a,b,c)\in \mathbb R^3); も線形写像になっている。
先に見た、

*** 練習 [#j3e80a73]
- &math(ax^2+bx+c\in V\to (a,b,c)\in \mathbb R^3);
- &math((a,b,c)\in \mathbb R^3 \to ax^2+bx+c\in V);

も線形写像になっている。

以下は一般的な写像について成り立つ話も多いが、
簡単のため線形写像に限った説明とする。

** 練習 [#j3e80a73]

問:&math(T); が線形写像であれば、&math(T(\bm 0)=\bm 0); となることを示せ。

答:&math(T(\bm 0)=T(0\bm 0)=0T(\bm 0)=\bm 0);

(最後の部分で、任意の &math(\bm x); について &math(0\bm x=\bm 0); となることを使った)

** 1対1写像(単写) [#f9291c06]
* 像 $\Image T$ [#n43982dd]

&math(T(ax^2+bx+c)=(a,b,0)); も &math(V\rightarrow\mathbb R^3); の線形写像である、
が、&math(T(ax^2+bx+c)=T(ax^2+bx+c')=(a,b,0)); となる。
ある線形写像 &math(T:V\to V'); の像は、~
>&math(\Image T\equiv\set{\bm x'\in V'|\exists \bm x\in V, \bm x'=T\bm x});

このように、一般の写像では異なるベクトルが同じ値に移される場合がある。
として定義され、&math(\Image T=T(V)); とも書かれる。当然、&math(\Image T\subset V'); である。

&math(\bm x\ne \bm y); であれば必ず &math(T(\bm x)\ne T(\bm y)); であるとき、
&math(T); は1対1写像である、あるいは、単写である、と言う。
関数では定義域、値域と言ったが、その値域にあたる。

&attachref(線形代数Ⅱ/線形独立、基底及び次元/写像.png,,50%);
&attachref(image.png,,33%);

1対1という言葉の意味:1対nはそもそも写像にならない。n対1になっていないことを示している。
** 線形写像の像は線形空間となる [#vbbe7187]

** 上への写像(全写) [#u804c5ca]
&math(\forall\bm x',\forall\bm y'\in V'); に対して、&math(\exists\bm x,\exists\bm y\in V); ただし
&math(\bm x'=T\bm x, \bm y'=T\bm y); であるから、

任意の &math(v'\in V'); に対して、そこに移ってくる &math(V); の元を見つけられる時、
上への写像、あるいは、全写であるという。
&math(
a\bm x'+b\bm y'&=aT\bm x+bT\bm y\\
&=T(a\bm x+b\bm y)\in V'
);

すなわち &math(\Image T\in V'); はベクトル和とスカラー倍について閉じており、
部分空間となる。

* 階数 [#oe674987]

ある線形写像 &math(T:V\to V'); の階数は、~
>&math(\dim (\Image T));

として定義される。

行列の階数との関係は後述。

練習:

&math(T: V\to V'); のとき、

&math(\dim (\Image T)\le \dim V);

&math(\dim (\Image T)\le \dim V');

を示せ。

解答:

前者は、&math(\dim V); の任意の基底が &math(\Image T); を張ることと、
&math((次元)=(基底の数)<(生成元の数)); であることから証明される。

後者は &math(\Image T); が &math(V'); の部分空間であることから自明。

* 上への写像(全写) [#u804c5ca]

&math(\Image T=V'); のとき、上への写像と呼ぶ。

これは、任意の &math(\bm x'\in V'); に対して、
そこに移ってくる &math(\bm x\in V, T\bm x=\bm x'); を見つけられること、
と同義である。

&attachref(線形代数Ⅱ/線形独立、基底及び次元/上への写像.png,,50%);

例えば、&math(T(ax^2+bx+c)=(a,b,c)); は &math(V\rightarrow\mathbb R^3); への全写であるが、~
&math(T(ax^2+bx+c)=(0,a,b,c)); は &math(V\rightarrow\mathbb R^4); への全写ではない。

「上へ」というのは、&math(T); により &math(V); 全体を移したときにできる「像」
(しばしば &math(T(V)=\set{T(\bm v)\in V'|\bm v\in V}); と書かれる) が、
&math(V'); の真上に、全体を覆い尽くすように被さるため。
* 1対1写像(単写) [#f9291c06]

&attachref(線形代数Ⅱ/線形独立、基底及び次元/上への写像.png,,50%);
一般の線形写像では異なるベクトルが同じ値に移される場合がある。

** 上への1対1写像(全単写) [#x5e3aeb2]
例:&math(T(ax^2+bx+c)=(a,b,0)); の時、
&math(T(ax^2+bx+c)=T(ax^2+bx+c')=(a,b,0)); である

単写かつ全写であることを言う。
&math(\bm x\ne \bm y); であれば必ず &math(T(\bm x)\ne T(\bm y)); であるとき、
&math(T); は1対1写像である、あるいは、単写である、という。

&attachref(線形代数Ⅱ/線形独立、基底及び次元/写像.png,,50%);

1対1という言葉の意味
- 1対nはそもそも写像にならない
- n対1になっていないことを示す
- &math(V); と &math(\Image T); との間に1対1対応を生む

* 上への1対1写像(全単写) [#x5e3aeb2]

単写かつ全写であることをいう。

&math(V); の元の1つ1つに &math(V); の元が1つ1つ対応することになる。

このときに限り、「逆写像 &math(T^{-1});」が定義できる。

- 1対1でないと、ある &math(v'\in V'); に複数の &math(v\in V); が対応してしまう
- 上への写像でないと、ある &math(v'\in V'); に対応する &math(v\in V); が存在しない場合がある

*** 練習 [#cdc16e96]
** 練習 [#cdc16e96]

問:線形写像の逆写像 &math(T^{-1}); は線形写像であることを示せ
問:~
線形写像の逆写像 &math(T^{-1}); は線形写像であることを示せ

答:
答:~
&math(\bm X=T(\bm x), \bm Y=T(\bm Y)); とすると、
&math(\bm x=T^{-1}(\bm X),\bm y=T^{-1}(\bm Y));

一方、

&math(T(\bm x+\bm y)=T(\bm x)+T(\bm y)=X+Y); 

の両辺に &math(T^{-1}); を作用させると

&math(\bm x+\bm y=T^{-1}(X)+T^{-1}(Y)=T^{-1}(X+Y)); 

また、

&math(T(k\bm x)=kT(\bm x)=kX); 

の両辺に &math(T^{-1}); を作用させると

&math(k\bm x=kT^{-1}(X)=T^{-1}(kX)); 

となって、 &math(T^{-1}); が線形であることが示された。

** 同型 [#j11499b9]
* 同型 [#j11499b9]

&math(V); と &math(V'); との間に上への1対1写像 &math(T); が存在する時、
&math(V); と &math(V'); は同型であるといい、~
&math(V\simeq V'); と書く。

またこのとき、&math(T); を同型写像と呼ぶ。

これは上で述べた2つの写像が「似ている」ことを数学的に表わした物。~
同型写像によって、2つの空間はすべて1対1に対応することになる。
同型写像によって、2つの空間に含まれる元同士がすべて1対1に対応することになる。

&math(T(ax^2+bx+c)=(a,c,b)); とか、~
&math(T(ax^2+bx+c)=(a+b,a-b,c)); とかも同型写像になる。
例:~
&math(T(ax^2+bx+c)=(a,c,b)); や &math(T(ax^2+bx+c)=(a+b,a-b,c));

すなわち同型である2つの線形空間の間の同型写像は一意には決まらないことに注意が必要。
注)同型である2つの線形空間の間には複数の同型写像が定義可能であるが、
1つでも同型写像を定義できれば同型と呼ぶ。

同型の線形空間は構造が似ているため、一方を調べればもう一方のことが分かる。~
特に、あるベクトル空間 &math(V); は &math(n=\dim V); として、
必ず &math(\mathbb R^n); に同型であるため、1年生でやった数ベクトル空間が、
任意の線形空間を理解するための基礎となる。

** 同値関係 [#wbf24771]

線形空間の「同型」は同値関係の公理を満たす。すなわち、

+ &math(V\simeq V);   : 反射律
+ &math(V\simeq V'\to V'\simeq V); : 対称律
+ &math(V\simeq V' \wedge V'\simeq V''\to V\simeq V''); : 推移律

同型の線形空間は構造が似ているため、一方を調べればもう一方のことが分かる。~
特に、あるベクトル空間 &math(V); は &math(n=\dim V); として、
必ず &math(\mathbb R^n); に同型であるため、1年生でやった数ベクトル空間が、
任意の線形空間を理解するための基礎となる。

** 例 [#f06ed7b5]

&math(V\to V'); の同型写像を &math(T(\bm x)); とする。

&math(\bm a, \bm b, \bm c\in V); が線形独立であれば、~
&math(T(\bm a), T(\bm b), T(\bm c\in V'); も線形独立である。~

対偶を証明する。

もし &math(T(\bm a), T(\bm b), T(\bm c)\in V'); が線形独立でなければ、
すべてがゼロではない3つのスカラー &math(\alpha,\beta,\gamma); に対して

&math(\alpha T(\bm a)+\beta T(\bm b)+\gamma T(\bm c)=\bm 0);

が成立する。&math(T); は線形なので、

&math((左辺)=T(\alpha \bm a+\beta \bm b+\gamma \bm c)=\bm 0);

ここで両辺に &math(T^{-1}); を掛けると、&math(T^{-1}(\bm 0)=\bm 0); より、

&math(\alpha \bm a+\beta \bm b+\gamma \bm c=\bm 0);

&math(\alpha,\beta,\gamma); はすべてがゼロではないから、
&math(\bm a, \bm b, \bm c); は線形独立ではない。

* 核 $\Kernel T$ [#naf8d1e7]

線形写像 &math(T:V\to V'); の核 (Kernel) :

&math(\Kernel T\equiv\set{\bm x\in V|T\bm x=\bm 0});

** 核はゼロを含む [#ve5a77e3]

&math(\because T\bm 0=\bm 0');

** 核は線形空間となる [#c0b617ac]

&math(\forall\bm x,\forall\bm y\in \Kernel T); に対して、

&math(
T(a\bm x+b\bm y)=aT\bm x+bT\bm y=a\bm 0+b\bm 0=\bm 0+\bm 0=\bm 0
);

より、&math(a\bm x+b\bm y\in \Kernel T); となる。

すなわち、&math(\Kernel T\in V); はベクトル和とスカラー倍に対して閉じており、
部分空間となる。

** 1対1写像の条件 [#ua8a6434]

&math(\Kernel T=\set{\bm 0}); は &math(T); が1対1写像であるための必要十分条件となる。

&math(\Kernel T\supsetneq \set{\bm 0}); なら複数の元が &math(\bm 0); に移る。

&math(\bm x\ne \bm y); かつ &math(T\bm x=T\bm y); ならば &math(T(\bm x-\bm y)=\bm 0); より
&math(\bm x-\bm y\in \Kernel T); かつ &math(\bm x-\bm y\ne \bm 0); より &math(\Kernel T\ne\set{\bm 0});

* 次元定理 [#pcd7ea8a]

上記をまとめると下図のようになる。

&attachref(次元定理.png,,33%);

-&math(\Kernel T); に含まれる元は &math(\bm 0); に移る
-&math(V-\Kernel T); に含まれる元は &math(\Image T-{\bm 0}); に移る

線形写像の次元定理とは、次の関係のことである。

&math(\dim V=\dim(\Image T) + \dim(\Kernel T));

略証明:

&math(V); に取った基底を &math(\bm a_1,\bm a_2,\dots,\bm a_{\dim V}); とし、
このうち &math(\bm a_1,\bm a_2,\dots,\bm a_n}); が &math(\Kernel T); 
に含まれるとすると、これらは &math(\Kernel T); の基底となる。

すなわち、&math(n=\dim(\Kernel T));

&math(\bm a_1,\bm a_2,\dots,\bm a_n}); は &math(T); によってすべて &math(\bm 0); 
に移る一方、&math(\bm a_{n+1},\bm a_{n+2},\dots,\bm a_{\dim V}); は
&math(\Image T); に移り、&math(T(\bm a_{n+1}),T(\bm a_{n+2}),\dots,T(\bm a_{\dim V})); は 
&math(\Image T); の基底を為す。

すなわち、

&math(\dim(\Image T)=\dim V-n=\dim V-\dim(\Kernel T));

より上記の定理を得る。

** 退化次数 [#obe2a00d]

もともと &math(\dim V); の次元を持つ線形空間が、
&math(T); で移されることにより &math(\dim(\Image T)=\dim V-\dim(\Kernel T)); 
の次元に縮まることから、&math(\dim (\Kernel T)); を退化次数と呼ぶこともある。

* 質問・コメント [#g72202c9]

#article_kcaptcha


Counter: 252484 (from 2010/06/03), today: 23, yesterday: 0