線形独立、基底及び次元 の変更点
更新- 追加された行はこの色です。
- 削除された行はこの色です。
- 線形代数II/線形独立、基底及び次元 へ行く。
- 線形代数II/線形独立、基底及び次元 の差分を削除
[[前の単元 <<<>線形代数II/抽象線形空間]]
[[線形代数II]]
[[>>> 次の単元>線形代数II/線形写像・像・核・階数]]
* 目次 [#rfb40a80]
#contents
&katex();
* 線形結合・一次独立・従属 [#n644d790]
復習: &math(
\begin{pmatrix}1\\2\\3\\4\end{pmatrix},\
\begin{pmatrix}2\\2\\3\\4\end{pmatrix},\
\begin{pmatrix}1\\2\\3\\3\end{pmatrix}
); は一次独立か?
線形代数I で学んだ 線形結合・一次独立・従属の概念を一般の線形空間でも定義できる
$\bm v_1,\bm v_2,\dots,\bm v_m\in V$ の線形結合とは:
>$\sum_{i=1}^m c_i\bm v_i=c_1\bm v_1+c_2\bm v_2+\dots+c_m\bm v_m$
$\bm v_1,\bm v_2,\dots,\bm v_m\in V$ が「一次独立である」とは:
>$\sum_{i=1}^m c_i\bm v_i=\bm 0$ から $c_1=c_2=\dots=c_m=0$ を導けること
$c_1=c_2=\dots=c_m=0$ 以外でも成り立つなら「一次従属である」という
問:
>実数を係数とする2次以下の $x$ の多項式からなる線形空間 $P^2[x]$ を考える~
>$x^2+3x-2,\ -x^2+2x,\ 3x^2$ は線形独立か?
答:
>$a(x^2+3x-2)+b(-x^2+2x)+c(3x^2)=0$ とすると、
>$(a-b+3c)x^2+(3a+2b)x+(-2a)=0=0x^2+0x+0$
>
>ここに現れた等号は、「左辺の多項式と右辺の多項式が等しい」という意味であるから、
左辺と右辺とで、対応する次数にかかる係数がすべて等しくなければならない。
>
>すなわち、$a-b+3c=0,3a+2b=0,-2a=0$ となり、
これを満たす $a,b,c$ は $(a,b,c)=(0,0,0)$ しか存在しない。
>
>したがって、与えられた3つのベクトルは線形独立である
演習:
>$P^2[x]$ において次のベクトルは線形独立か?
>
>[1] $2x^2+1,\ 2x-1,\ x^2+x$
>[2] $x^2+x+1,\ x-4,\ x^2+2x$
>[3] $x+1,\ x-1$
この演習の答えは [[線形代数II/演習1]] にある。
* 張る空間・生成元・部分空間 [#p7f650df]
$\bm v_1,\bm v_2,\dots,\bm v_m\in V$ の「張る空間」は次のように定義され、
>$W\equiv\set{\bm v=\sum_{i=1}^m c_i\bm v_i| c_1,c_2,\dots,c_m\in K}$
$W=\big[\bm v_1,\bm v_2,\dots,\bm v_m\big]$ と書く。(< > で括る流儀もある)
これは 「$\bm v_1,\bm v_2,\dots,\bm v_m$ の一次結合で表せるベクトルの集合」 と同義である。
このような $W$ は和、スカラー倍に対して閉じており、それ自身も線形空間となる。~
すなわち $W$ は $V$ の部分空間を為す。
>$\bm v_1 = \sum_{i=1}^m c_{1i}\bm v_i\in W$、$\bm v_2 = \sum_{i=1}^m c_{2i}\bm v_i\in W$ のとき、
>$k\bm v_1 = \sum_{i=1}^m (kc_{1i})\bm v_i\in W$、$(\bm v_1+\bm v_2) = \sum_{i=1}^m (c_{1i}+c_{2i})\bm v_i\in W$
$\bm v_1,\bm v_2,\dots,\bm v_m\in W\subset V$ を $W$ の「生成元」という。
例:
$$
\begin{aligned}
W_1&=\big[\,(1,1,-1)\,\big]\hspace{3cm}\leftarrow\mathrm{(1,1,-1)により張られる空間}\\
&\equiv\big\{\,a(1,1,-1)\in\mathbb R^3\,|\,a\in\mathbb R\big\}
\hspace{4.3mm}\leftarrow\mathrm{その定義}\\
\end{aligned}
$$
とするとき、$(2,2,-2),\,(-5,-5,5)\in W_1$ であるが、$(2,2,2)\notin W_1$
$$
W_1=\big[\,(1,1,-1)\,\big]=\big[\,(2,2,-2)\,\big]
$$
であることもすぐに分かるが、さらには
$$
\begin{aligned}
W_1&=\big[\,(1,1,-1),(2,2,-2)\,\big]\\
&\equiv\big\{\,a(1,1,-1)+b(2,2,-2)\in\mathbb R^3\,|\,a,b\in\mathbb R\big\}
\end{aligned}
$$
となることにも注意せよ。一方、
$$
W_1\neq W_2=\big[\,(1,1,-1),(2,2,2)\,\big]
$$
である。実際、$W_1\subset W_2$ であるが $W_2\not\subset W_1$ である。
----
多くの場合、~
-1つのベクトルにより張られる空間 $W_1=\big[\bm a\big]$ は直線的である~
←→ 直線の方程式 $\set{\bm p=s\bm a|s\in \mathbb R}$
-2つのベクトルにより張られる空間 $W_2=\big[\bm a,\bm b\big]$ は平面的である~
←→ 平面の方程式 $\set{\bm p=s\bm a+t\bm b|s,t\in \mathbb R}$
-3つのベクトルにより張られる空間 $W_3=\big[\bm a,\bm b, \bm c\big]$ は空間的である~
←→ 空間の方程式 $\set{\bm p=s\bm a+t\bm b+u\bm c|s,t,u\in \mathbb R}$
ただし %%%$\bm a,\bm b,\bm c$ が一次従属だと、その限りではない!%%%
線形空間の次元を考えるには、空間を張るベクトルの数に加えて、
それらが一次独立であることが重要。
* 4-2 基底・次元 [#t268fa3f]
$\bm v_1,\bm v_2,\dots,\bm v_m\in V$ が $V$ の生成元で、%%%なおかつ一次独立である%%%とき、~
$\bm v_1,\bm v_2,\dots,\bm v_m\in V$ は $V$ の「基底」である、という。
基底を構成するベクトルの数を線形空間の「次元」と呼ぶ。
基底の例:
- $\begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}0\\1\end{pmatrix}\in \mathbb R^2$
- $\begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}1\\1\end{pmatrix}\in \mathbb R^2$
- $x^2+3x-2,\ -x^2+2x,\ 3x^2\in P^2[x]$
ある空間 $V$ について、基底の取り方には任意性があるが、
「次元」は一意に決まる。
このことは、
- $n$ 個のベクトルにより張られる空間から、$n$ を越える個数の線形独立なベクトルを取り出せない
ことから導かれるが、この証明は省略する。 → [[(この証明)>線形代数II/線形独立、基底及び次元/次元の一意性]]
*** 演習: [#y0a3eb13]
(1) $V=\set{\bm x=(x,y,z)\in \mathbb R^3 | x+y+2z=0}$ は
$\mathbb R^3$ の部分空間となる。$V$ の基底を1つ定めよ。
(2) 「複素数の集合 $\mathbb C$」を「実数 $\mathbb R$上の線形空間」と考えて、基底を1つ定めよ。
* 列ベクトル表示(数ベクトル表現) [#b391d31c]
** 準備 [#rca6d364]
定理:
$\bm v_1,\bm v_2,\dots,\bm v_n\in V$ を $V$ の基底とすれば、
$\forall \bm x\in V$ はこれらの一次結合として一意に表される。
証明:
基底は $V$ を張るから、$\bm x$ を基底の一次結合として表せることは証明不要。
その表し方が「一意に決まること」を証明する。
もし、
$$
\bm x=\sum x_i\bm v_i=\sum x_i'\bm v_i
$$
であれば、これを変形して、
$$
\sum (x_i-x_i')\bm v_i=\bm 0
$$
基底の線形独立性から、
$$
x_1-x_1'=x_2-x_2'=\dots=x_n-x_n'=0
$$
として一意性が示される。
** 数ベクトル空間との1対1対応 [#k774687f]
上記の線形結合を、行列のかけ算と同様の表示を使って
$$
\bm x=\Big(\bm v_1\ \bm v_2\ \dots\ \bm v_n\Big)
\underbrace{\begin{pmatrix}
x_1\\ x_2\\\vdots\\x_n
\end{pmatrix}}_{\bm x'}=\Big(\bm v_1\ \bm v_2\ \dots\ \bm v_n\Big)\bm x'
$$
の形に書けば、
$\forall \bm x\in V$ に対して、対応する $n$ 次元列ベクトル
$\bm x'=\begin{pmatrix}x_1\\ x_2\\\vdots\\x_n\end{pmatrix} \in \mathbb R^n$
が1つ決まることになる。
逆に、$\forall \bm x'\in \mathbb R^n$ に対して、
$\bm x=\big(\bm v_1\ \bm v_2\ \dots\ \bm v_n\big)\bm x' \in V$ が1つ決まるから、
線形空間 $V$ の元1つ1つと $\mathbb R^n$ の元1つ1つとの間に
1対1の対応が付くことになる。
$\bm x'$ を、基底 $\bm v_1,\bm v_2,\dots,\bm v_n$ に対する
$\bm x$ の「列ベクトル表示」という。~
(列ベクトル表示は基底の取り方に依存することに注意せよ)
この対応関係は ベクトル和 や スカラー倍 に対しても保存されることから、
すべての $K$ 上の $n$ 次元線形空間 $V$ は、
同じ次元を持つ数ベクトル空間 $K^n$ と強い類似性を持つことが分かる。
こういう時、$V$ と $K^n$ は「同型である」、と言う。
以下で同型を厳密に定義する。
例:
実数を係数とする2次以下の $x$ の多項式からなる線形空間
$$
P^2[x]=\{ax^2+bx+c|a,b,c\in \mathbb R\}
$$
に、基底 $\bm e_1=x^2-1,\bm e_2=x+1,\bm e_3=1$ を取る。
任意の $\bm x=ax^2+bx+c\in P^2[x]$ に対して、
$\bm x'=\begin{pmatrix}a\\b\\a-b+c\end{pmatrix}$ と取れば、
$\bm x=\begin{pmatrix}\bm e_1&\bm e_2&\bm e_3\end{pmatrix}\bm x'$ が成り立ち、
基底 $\{\bm e_i\}$ に対する $\bm x$ の数ベクトル表現 $\bm x'\in \mathbb R^3$ がただ一つ求まることになる。
逆に、任意の $\bm x'=\begin{pmatrix}a'\\b'\\c'\end{pmatrix}\in \mathbb R^3$ に対して、
$$
\bm x=ax^2+bx+(-a+b+c)\in P^2[x]
$$
が求まる。
$\bm x=ax^2+bx+c\in P^2[x]$, $\bm y=a'x^2+b'x+c'\in P^2[x]$ の数ベクトル表現は
$\bm x'=\begin{pmatrix}a\\b\\a-b+c\end{pmatrix}$,
$\bm y'=\begin{pmatrix}a'\\b'\\a'-b'+c'\end{pmatrix}$
なので、
- $k\bm x$ のベクトル表現が $k\bm x'$ となること、
- $\bm x+\bm y$ のベクトル表現が $\bm x'+\bm y'$ となること、
を、容易に確認できる。
[[前の単元 <<<>線形代数II/抽象線形空間]]
[[線形代数II]]
[[>>> 次の単元>線形代数II/線形写像・像・核・階数]]
* 質問・コメント [#jf7db8ee]
#article_kcaptcha
Counter: 66501 (from 2010/06/03),
today: 16,
yesterday: 6